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ABSTRACT

We investigate the superposition strategy and its usefulness in terms of achievable infor-

mation theoretic rates. The achievable rate of the superposition of block Markov encoding

(decode-forward) and side information encoding (compress-forward) for the three-node Gaus-

sian relay channel is analyzed. It is generally believed that the superposition can out perform

decode-forward or compress-forward due to its generality. We prove that within the class of

Gaussian distributions, this is not the case: the superposition scheme only achieves a rate

that is equal to the maximum of the rates achieved by decode-forward or compress-forward

individually.

We use the insight gathered on superposition forward scheme and devise a new coding

scheme. This new scheme is termed as superposition noisy network coding. Superposition

noisy network coding combines partial decode-forward with noisy network coding. The novel

coding scheme is designed and analyzed for a single relay channel, single source multicast

network and multiple source multicast network. The special cases of Gaussian single relay

channel and two way relay channel are analyzed for superposition noisy network coding. The

achievable rate of the proposed scheme is higher than the existing schemes of noisy network

coding, compress-forward and binning.
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CHAPTER 1. INTRODUCTION

Transmission of smoke signals is one of the first known forms of human communication and

the system used relays. Since then technology has improved so much that we send satellites

in space for communication. An important question has been intriguing researchers all along

the ages of technology advancements. What is the fastest rate of transmission possible for

communication channels with relay? What strategies should be employed to achieve these

rates?

Information theory provides vast range of tools to find the theoretical limits on the rates

achievable for a given channel. Shannon [3] introduced the ideas of information theory and

derived the capacity result for a simple point to point communication channel. The capacity

of a point to point AWGN channel is

C = W log

(
1 +

P

N0W

)
bits/Hz,

where W is the bandwidth of the channel, P is the power constraint at the source and N0 is

the noise power spectral density. P
N0W

is the Signal to Noise Ratio (SNR) of the channel.

An optimum strategy is designed to prove the capacity for a given channel. The strategy

achieves a specific rate by maximizing the use of resources available. This is a lower bound

on the capacity of the channel and is termed as “achievable rate”. It is also shown that there

exists no scheme which can achieve a rate higher than a specific rate. This would be an upper

bound on the capacity. The upper bound and the lower bound should coincide to the capacity

of the channel.

Relay channels are known to provide higher capacity than point to point channels. The

relay node is an extra resource which facilitates transmission of information between the source

and destination at a higher rate. A simple probabilistic model for a three node terminal
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was introduced as the relay channel in 1971 [4]. Cover and El Gamal [5], formalized the

probabilistic model for the relay channel and introduced several achievable schemes using the

random coding argument. These schemes form the basis of the achievable rates for a simple

relay channel where the relay node tries to assist the communication between the source and

the destination. The main schemes introduced are Decode-Forward (DF), Compress-Forward

(CF) and Superposition-Forward (SF). The achievable rates for these schemes do not coincide

with the upper bound known for the relay channel. The best known upper bound for the

general relay channel is the cut-set bound [6]. The capacity of the relay channel is an open

problem for more than forty years. Many advances are being made to understand the existing

schemes for the relay channel and to propose novel strategies to achieve a higher transmission

rate.

Relay networks are multi terminal systems with relay channel as their fundamental building

block. Relay networks are an important system model in multi user information theory. The

achievability schemes for relay networks are based on the schemes devised for simple three node

relay channel. We look at the lower bounds on the capacity achieved by using superposition

encoding. We analyze the advantages of the superposition coding scheme for simple relay

channel and also propose new coding schemes based on superposition for relay networks. Let

us understand the importance of relay networks and multi user information theory in the

present context before we discuss the system model and contributions of this work.

1.1 Motivation

The relay channel has gained renowned interest in modern communication systems. The

main characteristics of modern communication systems are

• An increasing number of users or nodes in a network.

• A requirement of higher and higher data rates with increasing application in mobile

internet and media streaming.

• The transmission rates are to be improved with minimized power consumption.
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The idea is to use the available resources efficiently and to optimally transmit information.

Some of the strategies involve resource allocation, interference management and cooperative

communication.

The relay channel is a three node communication channel. A source node transmits in-

formation to a destination node with the help of a relay. This is similar to a point to point

communication channel except for the presence of a relay node. The relay node does not have

any information of its own to transmit. It facilitates the transmission of information from

source node to destination node possibly at a higher rate than the point to point channel. The

strategy employed to make the most efficient and optimal use of the available resource (the

relay node in this case) forms the basis for most research on relay channel.

The relay channel is a fundamental building block in network information theory. Recent

surge of interest in sensor networks and ad-hoc networks has bought the relay channel problem

back into the limelight. Any capacity achieving strategy for a large network would depend on

the capacity of its building block, the relay channel. Many transmission schemes for modern

networks are based on the strategies introduced for the simple relay networks.

The capacity of the general relay channel is not known completely even after 40 years

of research. We improve the achievability rates for relay networks with the relay channel.

The best known achievability scheme for the general discrete memoryless relay channel is the

superposition-forward scheme. An analysis of superposition-forward is carried out. We propose

a better achievability strategy for single source and multiple source discrete memoryless mul-

ticast networks. The strategy is termed as superposition noisy network coding. This strategy

combines superposition-forward and noisy network coding ideas. The strategy achieves a rate

better than the individual schemes of compress-forward, decode-forward and noisy network

coding in general.

1.2 System model

We provide a formal definition of the relay channel. The relay channel is a three node

network with a single source and a single destination. We also provide the system model for a

more general network, the discrete memoryless multi-source multicast network.
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Relay

Destination
X1

Y2
X2

Y3

p(y2, y3|x1, x2)Source

Figure 1.1 Discrete memoryless relay channel

The general discrete memoryless relay channel (DMRC) [5] shown in Fig. 1.1 is denoted

by (X1 ×X2, p(y2, y3|x1, x2), Y2 × Y3), where X1,X2,Y2,Y3 are finite sets and p(., .|x1, x2) is a

collection of probability distributions on Y2 × Y3, one for each (x1, x2) ∈ X1 × X2; x1 and x2

are the transmitted symbols at the source and the relay respectively; y2 and y3 are the received

symbols at the relay and the destination terminal respectively.

The memoryless property defines the channel model such that the output signal is only

dependent on the current channel input for each channel use. That is,

p(yi|xi, yi−1) = p(yi|xi).

The system wants to reliably communicate the message M ∈ [1, 2nR] from source node 1

(X1) to destination node 3 (Y3) with the help of the relay node 2 (X2, Y2).

The relay can transmit a function of its past received symbols

x21 = fi(y21, y22, . . . , y2(i−1))

The relay channel is the building block for large networks. For a more general example,

consider an N node discrete memoryless network. A discrete memoryless network shown in

Fig. 1.2 is represented by p(y1, . . . , yN |x1, x2, . . . , xN ). xk is the transmitted symbol and yk is

the received symbol respectively at node k. Each node wants to transmit its message to a set

of destination nodes and also act as a relay to transmit messages from other nodes. The relay

transmits a function of its past received symbol superimposed over its own message.
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P (Y1, . . . , YN |X1, X2, . . . , XN )
(X1, Y1)

(X2, Y2)

(Xk, Yk)

(XN , YN )

. . .

. . .

Figure 1.2 An N -node discrete memoryless network.

1.3 Contribution of thesis

We analyze the advantages of using superposition coding to achieve higher rates in relay

channel and relay networks. We present analytic results on the scheme of superposition for-

ward. There is a trade-off in the performance of the schemes decode forward and compress

forward as a function of the relative position of the relay node. Superposition-forward scheme

is a combination of these two schemes and has been thought to provide a potentially higher

achievable rate than the existing schemes. The strategy of superposition forward is analyzed

with sufficient insight into the fine details. The achievable rate is derived for a Gaussian relay

channel model and compared to the existing schemes. Superposition forward schemes is shown

to achieve the best of decode forward and compress forward rates for single relay channel. The

scheme cannot provide higher rates than the individual schemes but a single unified strategy

which achieves the advantages of both CF and DF depending on the position of the relay.

The insights gained from the superposition forward scheme is applied to design a novel

coding scheme. This scheme is easily extended to networks which have relays as their building

block. The superposition noisy network coding scheme is designed for the simple relay channel

and then extended to single source and multiple source multicast networks. The achievable rates

are derived for the Gaussian single and two-way relay channels. These rates are compared to

the existing schemes numerically. Superposition noisy network coding is shown to outperform
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the existing schemes for networks with simple relay channels. The contributions of the work

along with the results are presented in chapters 4 and 5.

1.4 Organization of dissertation

Literature review of the field of information theory specific to relay channels is provided

in Chapter 2. The relay channel was conceptualized and formally defined in the 70’s. After

the early work where the cut set bound and main cooperation strategies for the relay channel

were defined, there was very little work in the 90’s. Interest in the problem and in general

information theory resurged in 2000’s. Many problems have been posed and partially solved,

all centering around the idea of multi-user information theory and networks. A highlight of

important works carried out in the field of relay Channel and their main results is provided.

The fundamental concepts and tools useful in information theory are introduced in Chap-

ter 3. These are important tools needed for information theoretic analysis of communication

channels. The ideas of encoding and decoding used in the random coding argument are also

introduced. The concepts introduced here will be used extensively in all subsequent proofs and

analysis.

An analysis of the superposition of block Markov encoding (decode-forward) and side infor-

mation encoding (compress-forward) for the three-node Gaussian relay channel is provided in

Chapter 4. We prove that within the class of Gaussian distributions, the superposition scheme

achieves a rate that is at most equal to the maximum of the rates achieved by decode-and-

forward or compress-and-forward individually. We also present a superposition scheme that

combines broadcast with decode-forward, which even though does not achieve a higher rate

than decode-and-forward, provides us the insight to the main result mentioned above.

We use our insight on superposition-forward scheme to propose a scheme which improves on

the noisy network coding scheme for the Discrete Memoryless Multicast Network (DM-MN) in

Chapter 5. The relay nodes decode partial information and use it to make a better compressed

signal. The primary idea is not to send any redundant information and use the resources

more efficiently. The superposition noisy network coding scheme is explained for a single relay

channel and then extended to single source and multiple source multicast networks.
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The extension of decode-forward scheme to discrete memoryless multiple source multicast

networks is used as a backbone for superposition noisy network coding. This gives better

achievable rates for many important special scenarios. Numerical results are provided verifying

the advantages of superposition noisy network coding scheme for Gaussian single and two way

relay channels.

Conclusion and future work are presented in Chapter 6.
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CHAPTER 2. REVIEW OF LITERATURE

Claude E. Shannon founded the field of information theory in his landmark paper “A

mathematical theory of communication” [3]. He introduced a mathematical model for a point

to point communication channel. One of the major contribution of the work is to answer the

question “what is the fundamental limit of communication ?” The idea of channel capacity is

introduced and derived for a discrete memoryless channel and additive white Gaussian noise

(AWGN) channel.

Channel capacity is the tightest upper bound on the amount of information that can be

reliably transmitted over a communications channel. Encoding and decoding schemes are

devised to get an achievable rate of information transfer. An achievable rate is termed as the

capacity if we can prove that it is not possible to achieve any rate higher than this upper bound.

Various encoding and decoding techniques have been proposed in general for different chan-

nels in information theory. These techniques are block Markov encoding, superposition en-

coding, cumulative encoding, repetitive encoding, successive decoding, joint decoding and list

decoding. These techniques will be explained briefly in the next chapter.

A (2nR, n) code for a point-to-point DMC consists of the following:

• An index set W := {1, 2, . . . , 2nR}.

• An encoding function fn :W → Xn.

• A decoding function gn : Y n →W.

In multi-user information theory, there are two fundamental nature of wireless commu-

nication. Broadcast channel where a single source transmits the same message to multiple

destinations. Multiple access channel where many sources transmit to a single destination. In-

terference among different messages is a common phenomenon in multi-user networks. Simple
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building blocks of a network are analyzed for their capacity limit. The building blocks of a

network are broadcast channel, multiple access channel, relay channel and interference channel.

Many coding schemes and achievable rates have been derived for the multiple access, broad-

cast, interference and the relay channel. The capacity region of the broadcast, interference and

the relay channel remains unknown in general. We focus on the capacity of the relay channel

and its subsequent application to multi terminal networks. A review of some of the important

results on relay channel is presented next.

2.1 Early work

Relay channels were first encountered in the case of satellite communication around 1970.

The information signals can be transmitted directly or via satellite. The satellite decodes the

information and forwards it either to the destination or to another satellite.

No work on relay channel can go without reference to Van der Meulen’s work on 3 terminal

channels [4]. The relay channel was conceptualized and simple coding schemes were provided.

Different channel conditions were analyzed to show the performance of the schemes. The

schemes include multi-hopping, decode-forward, compress-forward and combination of these

schemes.

A more comprehensive work on relay channel was provided by Cover and El Gamal in 1979

[5]. Cover and El Gamal derived the cut set upper bound on the capacity C of the relay channel.

They introduced the strategies of decode-forward, compress-forward and superposition-forward.

These strategies use ideas of superposition encoding, Wyner-Ziv compression, binning and list

decoding.

In decode-forward, the relay decodes the message transmitted by the source. The source uses

block Markov encoding to instruct the relay on what to transfer in the next block. In the next

block, the relay and source coherently transmit the message to the destination. In compress-

forward, the relay does not decode the message transmitted by the source. It compresses the

received symbol and transmits to the destination. The destination uses the side information

provided by the relay and the original message from the source to decode the information.

Superposition-forward uses a combination of partial decode-forward and compress-forward to
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provide a generalized lower bound for the relay channel.

Decode-forward achieves the capacity of degraded relay channel and relay channel with

feedback. A channel is degraded if one receiver is a degraded version of the other receiver. In

degraded relay channel, the relay receiver y2 is better than the ultimate receiver y3. The relay

can thus co-operate to send the source message. The relay channel (X1×X2, p(y2, y3|x1, x2),Y2×

Y3) is said to be degraded if

p(y2, y3|x1, x2) = p(y2|x1, x2)p(y3|y2, x1)

that is X1 → (X2, Y2) → Y3. There is also a case of reversely degraded channel where the

relay y2 is worse than y3. This channel is less interesting since relay can contribute no new

information to the receiver.

Cover and El Gamal also introduced Additive White Gaussian Noise (AWGN) relay chan-

nel [5]. The noise added at the relay and destination are independent of each other. The

noise is additive Gaussian with zero mean and covariance N . The coding schemes namely

decode-forward and compress-forward were derived for the AWGN relay channel under power

constraints at the source and the relay.

Another important coding scheme for the relay channel is the Amplify-forward scheme [7].

In amplify-forward, the relay sends a scaled version of its previously received symbol. The

amplification is adjusted according to the relay and the source power constraints.

In summary, decode-forward achieves within 1/2 bit of the cut set bound [8] and outperforms

compress-forward when relay is close to the source. Compress-forward also achieves within

1/2 bit of cut set [9] and outperforms decode-forward when the relay is close to destination.

Amplify-forward achieves within 1 bit of cut set [9] and compress-forward always outperforms

amplify-forward.

El Gamal in 1981 [10], worked to generalize the cut set upper bound on the capacity to

multi terminal networks. The cut set upper bound is given as

C ≤ max
p(xN )

min
k∈D

min
S:1∈S,k∈Sc

H(Y (Sc)|X(Sc))

Aref further derived the cutset bound for the relay networks and extended the Decode-

and-Forward strategy to derive the capacity of a cascade of degraded relay channels [11]. The
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bound is tight for physically degraded network.

Willems and Carleial [12] [13] introduced new decoding strategies namely backward de-

coding and sliding window decoding. These strategies provide the same achievable rate as

the Decode-and-Forward rate. The advantage of these strategies is ease of analysis and might

provide higher rates when used in multiple source networks.

Zhang [14] partially established the capacity for a special class of relay channel where the

channel from relay to destination is noiseless.

Liao derived the capacity region of the multiple access channel [15]. Results on the capacity

of the broadcast channel and degraded broadcast channel were derived by Cover, Bergman and

Gallager [16] [17] [18] [19]. Körner and Marton proposed new coding schemes for the discrete

memoryless broadcast channel and derived the capacity of the general broadcast channel with

degraded message sets [20] [21]. The main idea of the achievability scheme is to split the

message into common message and independent message. The common message is decoded

by both the receivers. The independent message is transmitted using superposition over the

common message. One of the receiver decodes the superposed information after decoding the

common information. This method is referred as successive interference cancellation.

2.2 Recent work

Recent developments in the field of networks has renewed interest in AWGN relay networks.

Gupta and Kumar [22] derived fundamental information theoretic limits on traffic carrying

capacity of multi hop wireless networks. The network studied is of arbitrary size and topology.

Xie and Kumar [23] extended the generalized block Markov encoding scheme to a network of

multiple relays in 2004. Different aspects of relaying and co-operation in wireless networks

were introduced in 2005 by Kramer, Gastpar and Gupta [24]. One of the main results is the

extension of compress-forward to networks.

El Gamal, Mohseni and Zahedi [25] worked on bounds on capacity and minimum energy per

bit for AWGN relay channels in 2006. The main results were compress-forward with timesharing
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and an equivalent representation of the side information lower bound.

RCF = sup min{I(X1; Ŷ2, Y3|X2), I(X1, X2;Y3)− I(Ŷ2;Y2|X1, X2, Y3)}

This equivalent representation extends naturally to multiple relay networks. Another important

result is the capacity of frequency division AWGN relay channels with linear relaying.

W → Xn(W ) ∈ [2nR]

Y n
1

Y n → Ŵ (Y n, J(Y n
1 )) ∈ [2nR]

J(Y n
1 ) ∈ [2nR0 ]

Figure 2.1 Primitive relay channel [1]

Young-Han Kim worked on the coding techniques for primitive relay channels [1]. The

primitive relay channel shown in Fig. 2.1 is a simpler version of the more general relay channel.

The constant capacity link between the relay and the destination makes it easier to understand

and devise new capacity achieving coding schemes. In particular, the schemes of decode-

forward, compress-forward and hash-forward are analyzed. The hash-forward scheme uses

random binning at the relay as compared to random covering in compress-forward. In the

hash-forward scheme, the relay information is summarized in a manner completely independent

of geometry (random binning). The destination uses list decoding. In compress-forward, the

covers are hamming spheres of radius zero. It is observed that both compress-forward and hash-

forward achieve the capacity for the deterministic primitive relay channel where Y2 = f(X1, Y3)

[26].

Tse et al. [8] introduced the idea of deterministic channels which provides an easy setup to

deal with interference and cooperation. The deterministic channels provide ideas for schemes

that achieve capacity within a gap from the cutset bound. The upper and lower bounds coincide

for networks with no interference [27] and finite field networks [8].

In a seemingly unrelated but important work, Ahlswede, Cai, Li and Yeung [28] introduced

the network coding theorem. This work extends the max-flow min-cut theorem for the noiseless
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unicast case. The noiseless unicast network is shown in Fig. 2.2 The cut set bound of the

Noiseless Multicast Network

• Noiseless network modeled by the graph (N , E , C)









j

k

C

C

C
N

M M̂N

M̂j

M̂k

Network coding theorem (Ahlswede–Cai–Li–Yeung 2000)

C = mink∈D minS :∈S , k∈S c C(S)
• Extends the max-flow min-cut theorem for the unicast case

(Ford–Fulkerson 1956, Elias–Feinstein–Shannon 1956)
• Cutset bound achieved via forwarding if D = {N} or D = [ : N]
• In general, network coding is needed (eg. butterfly network)

5 / 21

Figure 2.2 Noiseless unicast network [2, Page 16-2]

noiseless unicast network is achieved using forwarding. In general, network coding is required

to achieve the cut set bound for noiseless multicast network. The butterfly network is a strong

example of how network coding achieves capacity. The network coding theorem is extended to

noiseless multi-source multicast networks, erasure multicast networks [29] and to deterministic

networks in [8] [27].

L.L.Xie [30] extends the idea of network coding to noisy multiuser channels using the

technique of random binning. In this scheme, the relay decodes the messages from more than

one source nodes as a multiple access channel. The decoded messages are randomly binned

and the index is transmitted to the destination. This scheme provides a general extension of

the network coding scheme to noisy multi-terminal networks.

X

Y1

Y3

Y2

Figure 2.3 3 receiver broadcast channel with degraded message sets

A new concept for a better achievable rate is presented by Nair and El Gamal [31] [32] [33]

in their work on broadcast channels. This new idea may be applicable to channels with relay. It
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is shown that decoding a part of information not required by a node can be useful in decoding

the required message at a higher rate. The new achievable rate region for the general broadcast

channel is termed as the Nair-Gamal region. The main results and key ideas are presented here.

A 3-receiver broadcast channel with degraded message sets is shown in Fig. 2.3. M0 is the

common message to be transmitted to all the receivers. M1 is message intended for one of the

receiver Y1. It is shown that the general extension of the Körner-Marton region to more than

two receivers is not optimal in general. A new coding scheme is developed which achieves a

strictly larger achievable rate region. One of the receiver decodes the common message directly

as the cloud center. The second receiver decodes indirectly with the satellite codeword and the

third receiver uses joint decoding to decode the transmitted messages.

The Körner-Marton region for a general 3 receiver broadcast channel is

R0 ≤ min{I(U ;Y1), I(U ;Y2), I(U ;Y3)} (2.1)

R1 ≤ I(X;Y1|U) (2.2)

This region is optimal for degraded broadcast channels. It is also optimal for a special case of

linear deterministic broadcast channels. For the case under consideration shown in Fig. 2.3, we

have I(U ;Y2) ≤ I(U ;Y1). The Körner-Marton region reduces to

R0 ≤ min I(U ;Y2), I(U ;Y3) (2.3)

R1 ≤ I(X;Y1|U) (2.4)

The Nair-Gamal region achieves the following rate region

R0 ≤ min{I(U ;Y2), I(V ;Y3)} (2.5)

R1 ≤ I(X;Y1|U) (2.6)

R0 +R1 ≤ I(V ;Y3) + I(X;Y1|V ) (2.7)

The key idea is to still use the message M0 as the cloud center U but split the message M1

into two parts and form the satellite messages V and X.

• The receiver Y1 decodes X to find the messages M0 and M1.
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• The receiver Y2 decodes U to find the message M0.

• The receiver Y3 decodes V to find the message M0 indirectly.

The choice of U is such that I(U ;Y3) ≤ I(U ;Y2) which necessitates R0 ≤ I(U ;Y3). If we can

find a V such that I(V ;Y3) ≥ I(V ;Y2), R0 can be increased to I(U ;Y2). The observation

follows from the Markov chains U − V −X and X − Y1 − Y2.

I(V ;Y1) ≥ I(V ;Y2) ≥ I(U ;Y2)

An interesting observation is that decoding extra information at the receiver helps decoding its

own information at a higher rate. This works in spite of the fact that the extra information is

private information meant for the other receiver. The other interesting channel models analyzed

are less noisy and essentially less noisy broadcast channels.

A new strategy of interference alignment [34] is presented next. This strategy can be

useful in relay networks with multiple source nodes and managing interference becomes a key

issue. The interference alignment scheme is constructed for a deterministic K-user interference

channel. The idea is translated to a K-user fully connected real Gaussian interference network.

The scheme is shown to achieve the degree of freedom outer bound of K/2. The Gaussian

channel is assumed to be real non-zero and constant coefficients with no propagation delays.

For the deterministic channel, the desired bits are received without a shift and the interfering

bits are received with a one bit shift.

The key ideas of interference alignment are

• Channel coefficients are continuous but vary over time and frequency: The variations

create a distinct linear transformation between each sender receiver pair. Thus the same

set of signal can align as interference at one receiver but be distinct at the desired receiver.

• Channel coefficients are continuous and fixed: Each node has m > 1 antennas. Channel

matrices provide distinct spatial rotation that align signal vectors at one receiver and not

at another.
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• K-user fully connected Gaussian channel with constant but complex coefficients: Inter-

ference is aligned in one dimension (imaginary) while the desired signal is received in the

other dimension (real).

• Gaussian interference network with constant channel coefficients with propagation delays:

The channels have even delays for the desired receiver transmitter pair and odd delays

for the undesired receiver transmitter pairs. All transmitter send over even time slots

and ensure desired signal is heard interference free at even time slots.

Kim et al [35] quantified the loss in compress-forward relaying without Wyner-Ziv coding

at the relay. This provides a good insight on the importance of Wyner-Ziv encoding to achieve

higher rates. The main problem addressed is the quantification of the loss in using standard

source coding as compared to Wyner-Ziv encoding at the relay. The quantification is done

in terms of Diversity Multiplexing Tradeoff (DMT). The channels are assumed such that the

relay has perfect knowledge of all the three channel coefficients and that the relay makes use of

Wyner-Ziv source coding with side information. Using source coding without side information

results in a significant loss in terms of DMT. For a given constraint on multiplexing gain,

the loss can be compensated using power control at the relay. Otherwise the loss remains

significant.

Lim et al. [36] combined the compress-forward strategy with network coding to propose

noisy network coding. This scheme uses repetition coding, no Wyner-Ziv binning and joint

decoding as key concepts. The noisy network coding scheme is shown to achieve better rates

for networks with more than one source. General achievability for multiple source multicast

networks is provided using noisy network coding.

More recently, Xie [37] analyzed the Noisy Network coding scheme and showed that the

advantage of joint decoding is useful only in network with more than one source. It is proved

that successive decoding, joint decoding and backward decoding all provide the same rates as

noisy network coding irrespective of repetition encoding or successive encoding.

In our next chapter, We introduce the methods and tools required for information theoretic

analysis of channel models. The state of the art encoding and decoding schemes are introduced.
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Important theorems and lemmas are introduced with their significance and relevance to common

problems. These tools will be extensively used in the analysis of superposition forward and

design of superposition noisy network coding schemes.
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CHAPTER 3. TOOLS OF THE TRADE

The basic tools and concepts used in information theory are explained in brief here. The

tools provide insight on the random coding argument and form the basis for all information

theoretic analysis. They are necessary to understand the proofs and information theoretic

analysis of relay networks. The reader is referred to [2] [6] [38] [39] for detailed proofs of the

techniques introduced here.

3.1 Introduction

The information theoretic analysis of channel models relies on the typicality of sequences

that are stochastically generated. The Asymptotic Equipartition Property (AEP) divides all

stochastically generated sequences into typical and non typical sets. The AEP is a direct

consequence of the law of large numbers. We begin with the law of large numbers and introduce

the AEP and typical sets. Once the idea of typical sets is clear, important lemmas namely

joint typicality, conditional and covering lemmas are introduced. These lemmas would be used

extensively in probability of error analysis. We next look at basic techniques for encoding and

decoding messages at different nodes.

3.2 Preliminaries

3.2.1 Typical sets

Consider a set of numbers X1, X2, . . . , Xn generated independently and identically dis-

tributed (i.i.d) with probability distribution p(X). The Law of Large Numbers (LLN) states
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that the average of these numbers is close to the expected value for large n.

1

n

n∑

i=1

Xi
p−→ E{X}

As a direct consequence of the law of large numbers, we have the AEP

1

n
log

1

p(X1, X2, . . . , Xn)

p−→ H(X)

where H(X) is the entropy of X. For large n, the AEP states that given a stochastic source,

the sequence of numbers generated can be any one of the random possibilities but the one that

is actually generated lies within a set where all the sequence have equal probability of being

generated. It is with high probability that the sequence generated will lie within this set.

AEP divides all sequences into two sets, typical set and non-typical set. The typical set

T (n)
ε has the following properties [2] [6] [38]

1. The probability of a sequence in the typical set is given by

2−n(H(X)+δ(ε)) ≤ p(X1, X2, . . . , Xn) ≤ 2−n(H(X)−δ(ε))

2. For sufficiently large n, the probability that a stochastically generated sequence will lie

in this set is close to one.

Pr{X ∈ T (n)
ε } > 1− ε

3. For sufficiently large n, the number of sequences or the cardinality of the typical set is

given by

(1− ε)2n(H(X)−ε) ≤ |T (n)
ε | ≤ 2n(H(X)+ε)

We next look at a similar property for a bivariate distribution

3.2.2 Joint typicality

The joint AEP for bivariate sequences X,Y distributed with probability distribution p(x, y)

states

1

n
log

1

p(Xn, Y n)

p−→ H(X,Y ).

The jointly typical set T (n)
ε for sequences (Xn, Y n) drawn i.i.d. according to p(xn, yn) has the

following properties [2] [6] [38]



www.manaraa.com

20

1. For sufficiently large n,

Pr{(Xn, Y n) ∈ T (n)
ε } > 1− ε

2. The cardinality of jointly typical set is given by

|T (n)
ε | ≤ 2n(H(X,Y )+ε)

3. If X and Y are independent with same marginals as p(xn, yn), then for large n

(1− ε)2−n(I(X,Y )+3ε) ≤ Pr{(Xn, Y n) ∈ T (n)
ε } ≤ 2−n(I(X,Y )−3ε)

where I(X;Y ) is the mutual information between the variables X and Y .

Following the properties of a jointly typical sequences, we state two important lemmas which

would be used extensively in all the proofs.

3.2.2.1 Conditional typicality lemma [2] [6] [38]:

The conditional typicality lemma states that for a given typical sequence xn and another se-

quence Y n generated for each sequence xn according to probability distribution
∏n
i=1 pY |X(yi|xi),

the probability that xn and Y n are jointly typical is close to one for sufficiently large n.

Pr{(xn, Y n) ∈ T (n)
ε (X,Y )} → 1 as n→∞

and for all typical sequences xn,

|T (n)
ε (Y |xn)| ≥ (1− ε)2n(H(Y |X)−δ(ε))

for Y n ∼∏n
i=1 pY |X(yi|xi).

The conditional typicality lemma states the number of jointly typical sequences Y n which

are generated given the typical sequences xn gets close to 2n(H(Y |X)) as n→∞. This is shown

graphically in Fig. 3.1. The result is useful in the channel coding argument and the proofs of

achievability theorems.

We next state another lemma useful in the achievability proofs and follows from the joint

typicality of random triples.
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Another Useful Picture

T (n)
� (X)

xn

X n Yn
T (n)
� (Y )

T (n)
� (Y |xn)

| · | .
= 2nH(Y |X)

LNIT: Information Measures and Typical Sequences (2010-06-22 08:45) Page 2 – 21

Joint Typicality for Random Triples

• Let (X,Y, Z) ∼ p(x, y, z). The set T (n)
� (X1,X2, X3) of �-typical n-sequences

is defined by

{(xn, yn, zn) :|π(x, y, z |xn, yn, zn) − p(x, y, z)| ≤ � · p(x, y, z)

for all (x, y, z) ∈ X × Y × Z}

• Since this is equivalent to the typical set of a single “large” random variable
(X,Y, Z) or a pair of random variables ((X,Y ), Z), the properties of joint
typical sequences continue to hold

• For example, if p(xn, yn, zn) =
�n

i=1 pX,Y,Z(xi, yi, zi) and

(xn, yn, zn) ∈ T (n)
� (X,Y, Z), then

1. xn ∈ T (n)
� (X) and (yn, zn) ∈ T (n)

� (Y, Z)

2. p(xn, yn, zn)
.
= 2−nH(X,Y,Z)

3. p(xn, yn|zn)
.
= 2−nH(X,Y |Z)

4. |T (n)
� (X|yn, zn)| .

= 2nH(X|Y,Z) for n sufficiently large

LNIT: Information Measures and Typical Sequences (2010-06-22 08:45) Page 2 – 22

Figure 3.1 Conditional typicality lemma [2, Page 2-21]

3.2.2.2 Joint typicality lemma [2] [6] [38]

Given a sequence of random triples (X,Y, Z) ∼ p(x, y, z)

Let (X,Y, Z) ∼ p(x, y, z). Then there exists δ(ε) → 0 as ε → 0 such that, given (xn, yn) ∈

T (n)
ε (X,Y ), let Z̃n be distributed according to

∏n
i=1 pZ|X(z̃i|xi) (instead of pZ|X,Y (z̃i|xi, yi)).

Then

• P
{

(xn, yn, Z̃n) ∈ T (n)
ε (X,Y, Z)

}
≤ 2−n(I(Y ;Z|X)−δ(ε))

• for sufficiently large n, P
{

(xn, yn, Z̃n) ∈ T (n)
ε (X,Y, Z)

}
≥ (1− ε)2−n(I(Y ;Z|X)+δ(ε))

The detailed proof for joint typicality lemma can be found at [2], [6]. The joint typicality

lemma implies that given two jointly typical sequences (xn, yn), and another sequence zn gen-

erated according to distribution
∏n
i=1 pZ|X(z̃i|xi). The probability of zn to be jointly typical

with the sequences (xn, yn) is close to 2−n(I(Y ;Z|X).

Next we look at Shannon’s channel coding theorem. The theorem provides a useful result

on the limits of information transfer between two points. The random coding argument uses

conditional typicality and joint typicality lemmas. The proof provides the general idea and

concepts used for achievability proofs in information theory.



www.manaraa.com

22

3.3 Channel coding

The general discrete memoryless channel is shown in Fig. 3.2 and defined in [3]. It is

represented by (X , p(y|x),Y), where X ,Y are finite sets and p(.|x) is a collection of probability

distributions on Y, one for each x ∈ X ; x is the transmitted symbol at the source and y is the

received symbol at the destination terminal.

P (Y |X)X Y

Figure 3.2 Point to point channel model

An (M,n) code for the channel consists of a set of integersM = {1, 2, . . . ,M}, an encoding

function x1 :M→ X n1 and a decoding function g : Yn3 →M.

Define λ(w) = p(g(Y ) 6= w) as the probability of error of the decoding function of the channel

and let λn be the maximal probability of error over all possible messages w. The rate R =

(1/n) logM of an (M,n) code is said to be achievable by a channel if for any ε > 0 and for

sufficiently large n, there exists a code with M ≥ 2nR such that λn < ε. A similar definition of

achievable rate can be made for relay channels.

The channel coding theorem [6, Theorem 8.7.1]: All rates below the capacity C are achiev-

able. Specifically, for every rate R < C, there exists a sequence (2nR, n) codes with maximum

probability of error λ(n) → 0. Conversely, any sequence of (2nR, n) codes with λ(n) → 0 must

have R ≤ C. The capacity C for a point to point channel is

C = max
p(x)

I(X;Y )

The brief sketch of the proof can be seen from the packing lemma which uses conditional

typicality and joint typicality lemmas.

3.3.1 Packing lemma

The encoding and decoding process for transmitting information reliably over a point to

point channel is described here. A detailed reference for the packing lemma is provided in [2].
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Codebook generation: Generate 2nR i.i.d. sequences xn according to probability distribution

p(X). The codebook is revealed to the receiver so that it knows all the possible sequences that

could be transmitted at the source.

With randomly generated symbols xn transmitted at the source. We know that these

sequences lie in the typical set by the way they are generated. At the receiver, we look for

a unique codeword xn that is jointly typical with the recieved symbol. There are 2n(H(Y |X))

possible sequences that are jointly typical and equally likely given xn is transmitted. We don’t

want two X sequences producing the same sequence Y . Then we won’t be able to decode the

message X at the destination uniquely. The total number of possible typical Y sequences is close

to 2nH(Y ). This set is divided into 2n(H(Y |X)) disjoint sets which are the possible sequences at

the receiver given X is transmitted. The total number of such disjoint sets is given by 2nI(X;Y )

which is the number sequences that can be transmitted reliably. Fig. 3.3 provides a graphical

representation of the packing lemma.

• The lemma is illustrated in the figure with U = ∅. The random sequences
Xn(m), m ∈ A, represent codewords. The Ỹ n sequence represents the received
sequence as a result of sending a codeword not in this set. The lemma shows
that under any pmf on Ỹ n the probability that some codeword in A is jointly
typical with Ỹ n → 0 as n → ∞ if the rate of the code R < I(X;Y |U)

Xn(1)

Xn(m)

X n Yn T (n)
� (Y )

Ỹ n

• For the bound on P(E2) in the proof of achievability: A = [2 : 2nR], U = ∅, for
m �= 1, the Xn(m) sequences are i.i.d. each distributed according to�n

i=1 pX(xi) and independent of Ỹ n ∼�n
i=1 pY (ỹi)

• In the linear coding case, however, the Xn(m) sequences are only pairwise
independent. The packing lemma readily applies to this case

• We will encounter settings where U �= ∅ and Ỹ n is not generated i.i.d.
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• Proof: Define the events

Em := {(Ũn, Xn(m), Ỹ n) ∈ T (n)
� }, m ∈ A

By the union of events bound, the probability of the event of interest can be
bounded as

P

� �

m∈A
Em

�
≤
�

m∈A
P(Em)

Now, consider

P(Em) = P{(Ũn, Xn(m), Ỹ n) ∈ T (n)
� (U,X, Y )}

=
�

(ũn,ỹn)∈T (n)
�

p(ũn, ỹn) P{(ũn,Xn(m), ỹn) ∈ T (n)
� (U,X, Y )|Ũn = ũn}

(a)

≤
�

(ũn,ỹn)∈T (n)
�

p(ũn, ỹn)2−n(I(X;Y |U)−δ(�)) ≤ 2−n(I(X;Y |U)−δ(�)),

where (a) follows by the conditional joint typicality lemma, since (ũn, ỹn) ∈ T (n)
�

and Xn(m) ∼�n
i=1 pX|U(xi|ũi), and δ(�) → 0 as � → 0. Hence�

m∈A
P(Em) ≤ |A|2−n(I(X;Y |U)−δ(�)) ≤ 2−n(I(X;Y |U)−R−δ(�)),

which tends to 0 as n → ∞ if R < I(X;Y |U) − δ(�)
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Figure 3.3 Packing lemma [2, Page 3-19]

We next look at another lemma in the context of lossy source coding. The idea is to send

a message X and decode X̂ which is the reproduction of the symbol X with some pre defined

distortion level. The concept is also useful in sending compressed information over a rate

limited channel.
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3.3.2 Covering lemma

We look at more general lossy source coding problem where the source and destination have

knowledge of some side information U . Let Xn represent the source sequence that is transmit-

ted. Let (Un, Xn) ∼ p(un, xn) be jointly typical random sequences. Let X̂n be conditionally

independent of Xn given Un and distributed according to
∏n
i=1 px̂|u(x̂i|ui). Then,

Pr{(Un, Xn, X̂n) /∈ T (n)
ε } → 0 as n→∞

if R > I(X; X̂|U).

Fig. 3.4 shows the graphical representation of the covering lemma [2] for the lossy source

coding case with no side information. The lemma is to shows the existence of at least one

reproduction sequence that is jointly typical with Xn provided R > I(X; X̂|U).

Covering Lemma

• We generalize the bound on the probability of encoding error, P(E), in the proof
of achievability for subsequent use in achievability proofs for multiple user source
and channel settings

• Let (U,X, X̂) ∼ p(u, x, x̂). Let (Un,Xn) ∼ p(un, xn) be a pair of arbitrarily

distributed random sequences such that P{(Un, Xn) ∈ T (n)
� (U,X)} → 1 as

n → ∞ and let X̂n(m),m ∈ A, where |A| ≥ 2nR, be random sequences,
conditionally independent of each other and of Xn given Un, each distributed
according to

�n
i=1 pX̂|U(x̂i|ui)

Then, there exists δ(�) → 0 as � → 0 such that

P{(Un, Xn, X̂n(m)) /∈ T (n)
� for all m ∈ A} → 0

as n → ∞, if R > I(X; X̂|U) + δ(�)

• Remark: For the lossy source coding case, we have U = ∅
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• The lemma is illustrated in the figure with U = ∅. The random sequences
X̂n(m), m ∈ A, represent reproduction sequences and Xn represents the
source sequence. The lemma shows that if R > I(X; X̂|U) then there is at
least one reproduction sequence that is jointly typical with Xn. This is the dual
setting to the packing lemma, where we wanted none of the wrong codewords to
be jointly typical with the received sequence

X̂n(1)

X̂n(m)

X̂ n X n T (n)
� (X)

Xn

• Remark: The lemma continues to hold even when independence among all
X̂n(m), m ∈ A is replaced with pairwise independence (cf. the mutual covering
lemma in Lecture Notes 9)
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Figure 3.4 Covering lemma [2, Page 3-52]

3.3.3 Binning

Binning is a source encoding scheme [6]. Given a random variable X generated according to

distribution p(x), we know that there are 2nH(X) typical sequences. To transmit the X symbols,

the encoder simply bins all the sequences into 2nR bins. The bin index is then transmitted

for the symbols. The decoder decodes the bin index and looks for typical sequences in the bin

index. If we make R large enough, then we can ensure that there is only one typical sequence

in each bin. Thus, using the binning technique, we can recover the symbols X reliably if

R > H(X).
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We next look at the distributed source coding problem. There are two sources sending

correlated messages X and Y to the destination. The encodings are done separately at the

sources, without the knowledge of what is being transmitted at the other source. By the binning

scheme described before, a rate R1 > H(X) is sufficient to recover the messages X. A rate

R2 > H(Y ) is sufficient to recover the messages Y . A rate of H(X) + H(Y ) is sufficient to

recover both messages when they are encoded separately. Slepian and Wolf [40] showed that

a rate of H(X,Y ) is sufficient to recover correlated messages even if the sources are encoded

separately. A brief outline of idea of the proof is provided here. Each source randomly bins its

messages into 2nR1 and 2nR2 bins. The destination terminal receives both the indices and looks

for sequences X and Y that are jointly typical. There are 2nH(X,Y ) such typical sequences.

How do we send the messages Y at the rate H(Y |X) when the messages X are sent at rate

H(X)? This is possible even without the Y encoder knowing the X messages transmitted at

the other encoder. The Y encoder is required to bin the messages in the typical set of Y |X.

Since the Y encoder does not know the messages X or the typical set Y |X, it randomly bins

all the messages Y into 2nR2 bins. If R2 > H(Y |X), then with high probability there would be

only one typical Y sequence in the set of typical Y |X sequences at the decoder.

3.3.4 Wyner-Ziv coding

We next look at the source coding problem with side information [41] shown in Fig. 3.5.

Two messages X and Y are encoded separately. Only X is to be recovered at the destination.

If R2 is the rate allowed for Y , what is the rate required for transmitting X reliably. If the

rate R2 > I(Y ;U) for some auxiliary random variable U , then X can be reliably transmitted

with rates R1 > I(X;U). The random variables X-Y-U form a Markov chain.

Now, how many bits are required to transmit the messages X within a distortion D given

the side information Y at the decoder? The side information Y is correlated with the transmit

messages X. In Wyner-Ziv [41] binning scheme, the source looks for a jointly typical codeword

with the message and then sends the bin index of the typical codeword. The decoder looks

for a typical codeword in the decoded bin and uses the side information to zero in the unique

codeword. The key idea is to keep the typical codewords in each bin to be small enough such
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• Now consider the special case, where p(x, y) > 0 for all (x, y). Then the
condition in the theorem reduces to H(X|U) = 0, or equivalently,
R∗

CSI-D = H(X). Thus in this case, side information does not help at all!

We show this by contradiction. Suppose H(X|U) > 0, then p(u) > 0 and
0 < p(x|u) < 1 for some (x, u). Note that this also implies that
0 < p(x�|u) < 1 for some x� �= x

Since we cannot have both d(x, x̂(u, y)) = 0 and d(x�, x̂(u, y)) = 0 hold
simultaneously, and by assumption pU,X,Y (u, x, y) > 0 and pU,X,Y (u, x�, y) > 0,
then E(d(X, x̂(U,Y ))) > 0. This is a contradiction since E(d(X, x̂(U,Y )) = 0.
Thus, H(X|U) = 0 and R∗

CSI-D = H(X)

Compared to the Slepian–Wolf theorem, Theorem 2 shows that causality of side
information can severely limit how encoders can leverage correlation among
sources
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Noncausal Side Information Available at the Decoder

• We now consider the case in which side information is available noncausally at
the decoder. In other words, (2nR, n) code is defined by an encoder m(xn) and
a decoder x̂n(m, yn)

Xn

Y n

M
X̂n(M,Y n)Encoder Decoder

• In the lossless case, we know from the Slepian–Wolf theorem that the optimal
compression rate is R∗

SI-D = H(X|Y ), which is the same rate as when side
information is available at both the encoder and decoder

• In general, can we do as well as if the side information is available at both the
encoder and decoder as in the lossless case?
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Figure 3.5 Source coding with side information [2, Page 12-16]

that side information can be used to identify the unique codeword within the allowed rate

distortion. The following rates are achievable by using the Wyner-Ziv binning scheme for rate

distortion with side information

RY (D) = min
p(w|x)

min
f

(I(X;W )− I(Y ;W ))

where f is the function mapping decoded codeword and side information to the output sequence

X̂.

3.4 Encoding

In this section, we provide a brief description of different encoding techniques used at the

source.

3.4.1 Superposition encoding and block Markov encoding

In block Markov encoding scheme [2] [6], messages are transmitted over B blocks, each of n

symbols. A sequence of B−1 messages, is sent over the channel in nB transmissions. Codebooks

are generated randomly and independently for each block. All the messages transmitted in a

given block carry new messages and are statistically dependent on messages transmitted in

the previous block. Thus messages decoded in the previous block are also transmitted without

interfering with the new messages being transmitted in the current block. This is possible

by using superposition encoding [2] [6]. This scheme is specifically advantageous in the relay

channel where the relay transmits the symbols it decoded in the previous block.
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A general idea of superposition encoding is to superimpose the new messages m1 over the

message from the previous block m2.

Fix p(u)p(x|u). Generate 2nR2 independent codewords un(m2) i.i.d. drawn according to dis-

tribution p(u). These codewords form the cloud centers in the codebook. For each un(m2), gen-

erate 2nR1 conditionally independent codewords xn(m1,m2) according to distribution p(x|u).

These would be the satellite codewords in the codebook. The codebook generation is explained

graphically in Fig. 3.6.

Superposition Coding Inner Bound

• The superposition coding technique illustrated in the BS-BC example can be
generalized to obtain the following inner bound to the capacity region of the
general DM-BC

• Theorem 1 (Superposition Coding Inner Bound) [1, 2]: A rate pair (R1, R2) is
achievable for a DM-BC ({X , p(y1, y2|x), Y1 × Y2} if it satisfies the conditions

R1 < I(X;Y1 |U),

R2 < I(U ;Y2),

R1 + R2 < I(X;Y1)

for some p(u, x)

• It can be shown that this set is convex and therefore there is no need for
convexification using a time-sharing random variable (check!)

LNIT: Broadcast Channels (2010-06-22 08:45) Page 5 – 13

Outline of Achievability

• Fix p(u)p(x|u). Generate 2nR2 independent un(m2) “cloud centers.” For each
un(m2), generate 2nR1 conditionally independent xn(m1, m2) “satellite”
codewords

Xn

Un

T (n)
� (X)

T (n)
� (U)

• Decoder 2 decodes the cloud center un(m2)

• Decoder 1 decodes the satellite codeword
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Figure 3.6 Superposition encoding [2, Page 5-14]

The destination decodes the messages in a successive way. It first decodes the cloud center

un(m2) in one block. The destination also decodes the satellite codeword given the cloud center

if the channel conditions are good.

3.4.1.1 Irregular encoding

The encoding scheme known as irregular encoding [5] uses superposition and is described

below

Codebook generation: Fix p(u)p(x|u).

• Randomly and conditionally independently generate 2nR1 codewords U(s) distributed as

∏n
i=1 ui.

• For each U(s), randomly and conditionally independently generate 2nR codewordsX(m|s)

according to
∏n
i=1 p(xi|ui(s))

This defines the codebook which is revealed to both transmitter and receiver. Randomly bin

the codewords m into the 2nR1 bins. The cell index for each message is now given as s(m).
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Encoding: If the message transmitted in block b− 1 is mb−1, find the bin index corresponding

to the codeword, sb(mb−1). Then transmit X(mb|sb).

The decoding can be done using successive or joint decoding techniques. The decoding tech-

niques will be discussed in the next section.

3.4.1.2 Regular encoding

The regular encoding scheme [39] also uses superposition and block Markov encoding. The

difference in the scheme is that it does not use binning. Instead, 2nR U codewords are generated

which would be the cloud center consisting of previous messages.

Codebook generation: Fix p(u)p(x|u).

• Randomly and conditionally independently generate 2nR codewords U(s) distributed as

∏n
i=1 ui.

• For each U(s), randomly and conditionally independently generate 2nR codewordsX(m|s)

according to
∏n
i=1 p(xi|ui(s))

This defines the codebook which is revealed to both transmitter and receiver.

Encoding: If the message transmitted in block b − 1 is mb−1, Then transmit X(mb|mb−1) in

block b.

The total codewords used in regular encoding is larger than the total number of codewords

required in irregular encoding.

3.4.2 Message repetition encoding

Message repetition encoding transmits the same message over each of the B blocks. The

message is now from the set of size 2nBR1 and decoding is done after B blocks of transmission

using joint decoding. This allows collaboration among all the blocks and each block provides

a better estimate of the message to be decoded. The message repetition scheme is introduced

and used in noisy network coding [36]. Noisy network coding and message repetition will be

explained more deeply in chapter 5.
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3.5 Decoding

Decoding is the process employed to find a unique transmitted message with the probability

of error going to zero. In general we look for a jointly typical transmitted codeword with the

received symbol. The decoding technique can vary depending on whether we chose to decode

the message after every block or after b blocks of transmission. There are many possible

decoding schemes which are explained in brief here.

3.5.1 List decoding

A (2nR, 2nL, n) code for a discrete memoryless channel (X , p(y|x),Y) consists of an encoder

mapping messages m ∈ 2nR to a set of codewords X. The decoder after receiving yn tries to

find a list of codewords L(yn) ⊂ 2nR of size |L| ≤ 2nL that contains the transmit message. An

error occurs if the list does not contain the transmit message.

List decoding is useful in the relay channel where the destination decodes a list of possible

messages transmitted by the source in block b− 1. The destination used the additional infor-

mation sent by the relay in block b to look for a unique codeword within the list of codewords

decoded.

3.5.2 Successive decoding

The succesive decoding for relay channels was introduced in [5]. For two messages trans-

mitted at the source using superposition encoding, the decoding is performed in two steps

• The decoder decodes the cloud center of the transmitted message. m̂2 is declared to be

the message transmitted if

(u(m̂2), y
n) ∈ T (n)

ε

• After decoding m2, the decoder then finds a unique message m1, the satellite codeword

such that

(u(m̂2), x(m̂1|m̂2), y
n) ∈ T (n)

ε

If such a typical sequence is not uniquely found, an error is declared. The achieved rate can be

different depending on which message is decoded first.
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3.5.3 Joint decoding

A detailed description of joint decoding is provided in [2]. The decoder declares that the

messages (m̂1, m̂2) were transmitted if

(u(m̂2), x(m̂1|m̂2), y
n) ∈ T (n)

ε

The error events correspond to the following situations

• Both the original codewords are not typical, this probability of error goes to zero by

conditional typicality lemma.

• Message m1 is jointly typical while an error is made in finding the unique jointly typical

m2. This achieves one of the corner points of successive decoding.

• Message m2 is jointly typical while an error is made in finding the unique jointly typical

m1. This achieves the other corner points of successive decoding.

• Error is made in decoding both the messages. This gives a bound on the sum rate of

both the messages and this is achieved by timesharing in successive decoding.

Joint decoding is stronger than successive decoding since it does not need time sharing to

achieve all the points in the achievable region.

3.5.4 Backward decoding

Decoding at the receiver is done backwards after all the b blocks have been decoded [13]

[12]. The decoder uses the estimate of message transmitted in block b to decode the message

transmitted in block b− 1. Backward decoding has a delay of B blocks.

3.6 Conclusion

Now, we have a good understanding of the tools useful in information theory and espe-

cially in information theoretic analysis of relay channels. We will use these tools to derive the

achievability region for the relay channel and develop new encoding and decoding schemes.
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An analysis of superposition-forward is provided in the next chapter. This strategy has not

been understood completely so far and is believed to provide better rates than decode-forward

or compress-forward. The chapter is followed by introduction of superposition noisy network

coding which is an extension of superposition-forward scheme with noisy network coding. The

generalization of decode-forward and superposition noisy network coding to single source and

multiple source multicast networks is provided.



www.manaraa.com

32

CHAPTER 4. SUPERPOSITION-AND-FORWARD FOR AWGN RELAY

CHANNEL

We analyze the achievable rate of the superposition of block Markov encoding (decode-

forward) and side information encoding (compress-forward) for the three-node Gaussian relay

channel. It is generally believed that the superposition can out perform decode-and-forward

or compress-and-forward due to its generality. We prove that within the class of Gaussian

distributions, the superposition scheme only achieves a rate that is equal to the maximum

of the rates achieved by decode-forward or compress-forward individually. We also present a

superposition scheme that combines broadcast with decode-forward, which even though does

not achieve a higher rate than decode-forward, provides us the insight to the main result

mentioned above.

4.1 Introduction

The relay channel, introduced by van der Meulen [4] is a fundamental building block in

network information theory. It consists of a relay terminal assisting communication between a

source terminal and a destination terminal, facilitating a higher data rate than a point to point

channel. Cover and El Gamal [5] introduced two new coding strategies and a cut-set upper

bound for the relay channel. They derived the capacity of the degraded and reversely degraded

relay channels. Capacity results have been derived for special cases of the relay channel like

the semi-deterministic case [42] but the capacity of the general relay channel is still unknown.

The main achievability strategies known for the relay channel are decode-forward and

compress-forward [5]. The DF scheme is also known as the general block Markov encoding

scheme. The relay decodes the transmitted message and jointly transmits the message from the
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source to the destination terminal. The DF strategy is optimal and achieves the cut-set bound

when the source to relay channel is strong. The CF scheme is known as the side-information

encoding scheme. The relay compresses the received signal without decoding and transmits to

the destination terminal. The destination terminal treats the compressed information as side

information and decodes the original message. The CF scheme is asymptotically optimum and

achieves the cut-set bound when the relay to destination channel is strong. This allows the

received signal at the relay to be conveyed faithfully to the destination. A combination of the

two strategies that superimposes DF and CF was also proposed in [5, Theorem 7]. We refer to

this scheme as superposition-forward. The SF scheme achieves the capacity for the special cases

of degraded, reversely degraded and semi-deterministic relay channels. Due to the generality

of the result in [5, Theorem 7], it is expected it can offer higher achievable rates than DF or

CF alone.

In this chapter, we investigate the coding scheme for the general Gaussian relay channel.

The initial motivation for the work was to develop new coding strategies with higher achievable

rates. A new coding strategy was designed which superimposes decode-forward and broadcast,

as presented in Section 4.3. The scheme unfortunately yields a rate that is inferior to DF.

This attempt, though not successful, prompted us to investigate the general superiority of SF,

especially for the Gaussian relay channel. It is found that for Gaussian relay channel, within

the class of Gaussian distributions, the SF can achieve at most the larger rate achievable by DF

or CF alone — there is no need to do superposition for Gaussian distributions (Section 4.4). We

also provide a numerical example that verified the theoretical result in Section 4.5. Section 4.6

concludes the chapter.

Notation: For random variables X,Y, Z, we use p(x, y, z) to denote the joint distribution,

when there is no confusion, as a short cut to pX,Y,Z(x, y, z). When X and Z are conditionally

independent given Y (i.e., X,Y , and Z form a Markov chain), we write X − Y − Z.

4.2 Preliminaries

We present the mathematical models for the discrete-memoryless and Gaussian relay chan-

nels in this section, and also include the known results on achievable rates that will be used
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later.

4.2.1 Discrete memoryless relay channel

The general discrete memoryless relay channel (DMRC) is the same as defined in [5]. A brief

description is given here for completeness. The DMRC is denoted by (X1×X2, p(y2, y3|x1, x2),

Y2 × Y3), where X1,X2,Y2,Y3 are finite sets and p(., .|x1, x2) is a collection of probability

distributions on Y2 × Y3, one for each (x1, x2) ∈ X1 × X2; x1 and x2 are the transmitted

symbols at the source and the relay respectively; y2 and y3 are the received symbols at the

relay and the destination terminal.

An (M,n) code for the relay channel consists of a set of integers M = {1, 2, . . . ,M}, an

encoding function x1 :M→ X n1 a set of relay functions {fi}ni=1 such that

x2i = fi
(
Y21, Y22, . . . , Y2(i−1)

)
, 1 ≤ i ≤ n,

and a decoding function g : Yn3 →M. The joint probability mass function onM×X n1 ×X n2 ×

Yn2 × Yn3 is

p(w, x1, x2, y2, y3) = p(w)

n∏

i=1

p(x1i|w)p(x2i|y21, y22, . . . , y2i−1)p(y2i, y3i|x1i, x2i). (4.1)

Define λ(w) = p(g(Y ) 6= w) as the probability of error of the decoding function of the relay

channel and let λn be the maximal probability of error over all possible messages w. The rate

R = (1/n) logM of an (M,n) code is said to be achievable by a relay channel if for any ε > 0

and for sufficiently large n, there exists a code with M ≥ 2nR such that λn < ε.

The dependency graph of the discrete memoryless relay channel is shown in Fig. 4.1

4.2.2 Gaussian relay channel

Fig. 4.2 shows the Gaussian relay channel model that we will be using. The received symbols

at the relay and the destination terminal are given respectively by

Y2 = aX1 + Z1 (4.2)

Y3 = X1 + bX2 + Z2 (4.3)
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Figure 4.1 Dependency graph for the relay channel

where the noise terms Z1 and Z2 are uncorrelated zero mean Gaussian random variables with

variances N1 and N2 respectively, and a and b are the channel gain constants. As a result, we

have

p(y2, y3|x1, x2) =
1

2π
√
N1N2

exp

[
−(y2 − ax1)2

2N1
− (y3 − x1 − bx2)2

2N2

]
, (4.4)

which will be the channel assumed throughout the chapter.

X1

Z1

Z2

Y2 : X2

a b

Y3

Figure 4.2 Gaussian relay channel

The average power constraints at the transmitters are

1

n

n∑

i=1

x21i(k) ≤ P1, ∀k ∈M, (4.5)

and

1

n

n∑

i=1

x22i ≤ P2, ∀yn2 ∈ <n. (4.6)

4.2.3 Known achievable rates

We briefly review the known results for DF, Partial-DF, CF, and the SF.
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4.2.3.1 Decode-forward

For DMRC, the DF scheme achieves any rate less than [5, Theorem 1]

RDF = sup min{I(X1;Y2|X2), I(X1, X2;Y3)} (4.7)

where the supremum is taken over all possible p(x1, x2). A brief description of the encoding

and decoding algorithm along with the probability of error analysis is provided.

Codebook Generation: Consider pX1,X2 . We use regular encoding and superposition encoding.

For each block b = 1, . . . , B + 1,

• generate 2nR codewords xn2b(v) i.i.d. using pX2 for all v = 1, . . . , 2nR.

• generate 2nR codewords xn1b(v,m) i.i.d. using pX1|X2
for all m = 1, . . . , 2nR.

Source Transmission: In block b, the source transmits the codeword xn1b(mb−1,mb).

Relay Terminal: Checks for a typical m̃b using m̂b−1 and yn

xn1b(m̂b−1, m̃b),x
n
2b(m̂b−1), y2bn ∈ T (n)

ε

An error is declared if no such message is found or more than one such message is jointly

typical. Using conditional typicality, joint typicality and Markov lemmas, it can be shown that

the probability of error is close to zero for sufficiently large n if

R < I(X1;Y2|X2)

This can be interpreted as the rate at which messages can be reliably transmitted from the

source to the relay.

Sink Terminal: We use sliding window decoding which is same as backward decoding but the

delay is only 2 blocks now. The terminal uses the symbols received in two blocks to decode one

message. The coding scheme was introduced by Carleial [13] in 1982. The sink terminal uses

yn3,b−1, y
n
3b, m̂b−2 to find a jointly typical message m̃b−1 such that

• {xn1,b−1(m̂b−2, m̃b−1),xn2,b−1(m̂b−2),yn3,b−1} ∈ T
(n)
ε

• {xn2,b(m̃b−1),yn3,b} ∈ T
(n)
ε
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Again using typicality lemmas, it can be shown that the probability of error is close to zero if

R < I(X1, X2;Y3)

This rate can be interpreted as the rate at which both source and the relay coherently

transmit information to the destination. Thus the rate achieved by decode forward scheme

for discrete memoryless relay channel is derived. The rate can also be achieved using random

partitioning/binning (irregular encoding) scheme described before. Backward decoding can

also be employed at the sink terminal.

4.2.3.2 Partial decode-forward

Partial decode-forward [5] [42] is similar to decode-forward but the relay does not decode

the message completely. This relaxes the constraint to decode the message at higher rate at the

relay when the source relay link has low signal to noise ratio. In the next section, we explain

encoding and decoding strategy for partial decode forward.

Codebook generation:Fix p(u, x1, x2).

• Generate 2nR
′

sequences x2b(v) according to probability p(x2) and v ∈ [1, 2nR
′
].

• For each x2b(v) randomly generate 2nR
′

i.i.d. sequences unb (v,m) according to probability

p(u|x2) where m ∈ [1, 2nR
′
].

• For every x2b(v) and unb (v,m), generate 2nR
′′

i.i.d. sequences x1b(v,mb, tb) according to

p(x1|u, x2) and t ∈ [1, 2nR
′′
]

Source terminal: The source terminal transmits codeword x1b(mb−1,mb, tb)

Relay terminal: The relay uses yn2b and m̂b−1 to find a unique message m̃b such that

{un1,b(m̂b−1, m̃b),x
n
2,b(m̂b−1),y

n
2,b} ∈ T (n)

ε

This would decode the correct message with high probability provided

R′ < I(U ;Y2|X2)
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Sink Terminal: The sink uses yn3,b−1, y
n
3b and m̂b−2 to decode the messages m̃b−1 and t̃b−1 by

the following joint typicality rule

{un1,b−1(m̂b−2, m̃b−1),x1,b−1(m̂b−2, m̃b−1, t̃b−1),x
n
2,b−1(m̂b−2),y

n
3,b−1} ∈ T (n)

ε (4.8)

{xn2,b−1(m̂b−2),y
n
3,b−1} ∈ T (n)

ε (4.9)

The messages t̃b−1 would be decoded correctly if

R′′ < I(X1;Y3|X2, U)

The message m̃b−1 would be decoded correctly if

R′ < I(U ;Y3|X2) + I(X2;Y3)

The rates achieved by partial decode forward for the discrete memoryless relay channel is

then

R′ +R′′ = max
pU,X1,X2

min{I(U ;Y2|X2) + I(X1;Y3|X2, U), I(X1, X2;Y3)}

If the relay channel is semi-deterministic, that is Y2 = f(X1, X2). Then we can chose

U = Y2 without violating the Markov chain

U ↔ [X1, X2]↔ [Y2, Y3]

This choice of U achieves the capacity of the semi deterministic relay channel [42] given by

C ≤ max
pU,X1,X2

min{H(Y2|X2) + I(X1;Y3|X2, Y2), I(X1, X2;Y3)}

4.2.3.3 Compress-forward

The relay does not decode the message in the compress-forward scheme [5] and uses Wyner-

Ziv encoding to transmit side information to the destination.

Codebook generation:

• Generate 2nR sequences x1b(m) according to probability p(x1) where m ∈ [1, 2nR].

• Generate 2nR2 i.i.d. sequences xn2b(v) according to probability p(x2) where v ∈ [1, 2nR2 ].
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• For every x2b(v), generate 2nR
′
2 i.i.d. sequences ŷ2b(v, t, u) according to p(ŷ2|x2) and

t ∈ [1, 2nR
′
2 ], u ∈ [1, 2nR2 ]

Source Terminal: Transmit x1b(m) .

Relay Terminal: The relay finds (t̃b, ũb) such that

{yn2b,xn2b(vb), ŷ2b(vb, t̃b, ũb)} ∈ T (n)
ε

and sets ũb = vb+1. If more than one such message is found, one of them is chosen. If no

message is found to be typical, then set vb+1 = 1. We will find a jointly typical sequence ũb if

R2 +R′2 > I(Ŷ2;Y2|X2)

Sink Terminal: The destination uses yn3b, y
n
3,b−1 to find a jointly typical m̃b−1

{xn2b(vb),yn3b} ∈ T (n)
ε

which gives the rate bound

R2 < I(X2;Y3)

The sink terminal finds a typical t̃b−1

{xn2,b−1(v̂b−1),yn3,b−1, ŷn2,b−1(v̂b−1, t̃b−1, v̂b)} ∈ T (n)
ε

which gives the rate bound

R′2 < I(Ŷ2;Y3|X2)

The sink terminal also looks for a jointly typical m̃b−1 such that

xn1,b−1(m̃b−1),x
n
2,b−1(v̂b−1),y

n
3,b−1, ŷ

n
2,b−1(v̂b−1, t̃b−1, v̂b)

with a rate constraint

R < I(X1; Ŷ2, X2, Y3) = I(X1; Ŷ2, Y3|X2)

Combining the above rate bounds and using the Markov chain Y3 ↔ (X2, Y2) ↔ Ŷ2. The

CF scheme achieves any rate less than [5, Theorem 6]

RCF = sup I(X1; Ŷ2, Y3|X2), such that I(X2;Y3) ≥ I(Ŷ2;Y2|X2, Y3) (4.10)
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where supremum is taken over all joint probability distributions of the form

p(x1, x2, y2, y3, ŷ2) = p(x1)p(x2)p(y2, y3|x1, x2)p(ŷ2|y1, x2). (4.11)

El Gamal, Mohseni, and Zahedi [25] put forth an equivalent characterization of the CF

scheme. That is, it achieves any rate less than

RCF = sup min{I(X1; Ŷ2, Y3|X2), I(X1, X2;Y3)− I(Ŷ2;Y2|X1, X2, Y3)} (4.12)

where supremum is still taken over all joint probability distributions of the same form as in

(4.11).

4.2.3.4 Superposition-forward

The supremum of rates achievable by superimposing DF and CF [5, Theorem 7] is

RSF = sup(min{I(X1;Y3, Ŷ
′
2 |X2, U) + I(U ;Y2|X2, V ),

I(X1, X2;Y3)− I(Ŷ ′2 ;Y2|U,X1, X2, Y3)}) (4.13)

where the supremum is over all joint probability distributions of the form

p(u, v, x1, x2, y
′
2, y3, ŷ2) = p(v)p(u|v)p(x1|u)p(x2|v)p(y2, y3|x1, x2)p(ŷ′2|x2, y2, u) (4.14)

subject to the constraint

I(X2;Y3|V ) ≥ I(Ŷ ′2 ;Y2|X2, Y3, U). (4.15)

Finally, the rate is upper bounded by the cut-set bound [5] [6]

RCS = sup min{I(X1, X2;Y3), I(X1;Y2, Y3)}, (4.16)

where the supremum is taken over all possible distributions p(x1, x2).

4.3 Broadcast over decode-forward

Before investigating the coding scheme that superimposes CF and DF for the Gaussian

relay channel, we will first look at a simpler coding scheme. In this scheme, partial information

is decoded first at both the relay and the destination terminals like in a broadcast channel.
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The remaining message is decoded and forwarded given the partial information available at the

relay and destination terminal. The coding scheme is equivalent to superimposing broadcast

over decode and forward.

We split the message M into two parts M ′ and M ′′ with respective rates R′ and R′′. We

demand M ′ be decoded at both relay and destination. The relay also decodes the message M ′′

which the destination could not decode and sends this extra information to the destination in

a block Markov encoding fashion. This strategy can be designed using an auxiliary random

variable U and a block Markov superposition encoding explained below.

Theorem 1. For any relay channel (X1×X2, p(y2, y3|x1, x2),Y2×Y3), the rate R is achievable

where

R < sup
P
{min{I(U ;Y3), I(U ;Y2|X2)}+ min{I(X1;Y2|X2, U), I(X1, X2;Y3|U)}} (4.17)

and the supremum is taken over all probability distribution functions of the form

p(u, x1, x2, y2, y3) = p(u)p(x2)p(x1|x2, u)p(y2, y3|x1, x2).

Proof:

1. Codebook Generation: Encoding is performed in K+1 blocks. For each block k, generate

2nR
′

codewords unk(s), s = 1, 2, . . . , 2nR
′

by choosing the uki(s) independently using the

distribution PU (·). Generate 2nR
′′

codewords xn2k(t), t = 1, 2, . . . , 2nR
′′

by choosing x2ki(t)

independently using the probability distribution PX2(·). Now use superposition coding

and generate 2nR
′′

codewords xn1k(r|s, t), r = 1, 2, . . . , 2nR
′′

for every pair of (unk(s), xn2k(t)),

by choosing the x1k,i(r|s, t) independently using P(X1|X2,U)(.|uk,i(s), x2k,i(t)).

2. Encoding: Let sk be the message index of M ′ and tk be the message index of M ′′ respec-

tively to be sent in block k. The source encoder then transmits xn1k(tk|sk, tk−1) where tk−1

is the index of M ′′ sent in the previous block. The relay in block k will send xn2k(t̂k−1),

where t̂k−1 is the estimate of tk−1 at the relay.

3. Decoding at relay terminal: Assume that decoding of sk−1 and tk−1 in block k − 1 has

been successful. Upon receiving yn2k in block k, the relay looks for a unique ŝk such that

(
un1k(ŝk), x

n
2k(t̂k−1), y

n
2k

)
∈ Tnε (PU,X2,Y2).
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Having decoded ŝk, the relay now looks for a unique t̂k such that

(
xn1k(t̂k|ŝk, t̂k−1), un1k(ŝk), xn2k(t̂k−1), yn2k

)
∈ Tnε (PU,X1,X2,Y2).

4. Decoding at the sink terminal: Upon receiving yn3k, the destination terminal looks for a

unique s̃k such that (un1k(s̃k), y
n
3k) ∈ Tnε (PU,Y3). Now, the destination decodes the addi-

tional information that the source sends in a block Markov decoding fashion. The destina-

tion terminal tries to find a unique t̃k−1 such that
(
xn2k(t̃k−1), u

n
1k(s̃k), y

n
3k

)
∈ Tnε (PU,X2,Y3)

and
(
xn1k(t̃k−1|s̃k−1, t̃k−2), un1k(s̃k−1), xn2k(t̃k−2), yn3(k−1)

)
∈ Tnε (PU,X1,X2,Y3).

5. Rate analysis: At the relay, since we have a single user channel from U to Y2, we will be

able to decode the U codewords with low probability of error if R′ < I(U ;Y2|X2). We

can also decode the index tk if

R′′ < I(X1;Y2|U,X2).

The destination first decodes the codeword U with a low probability of error provided

R′ < I(U ;Y3), and then decodes the message tk using successive interference cancellation

on the messages from the relay and the source. The message would be decoded with low

probability of error provided

R′′ < I(X2;Y3|U) + I(X1;Y3|X2, U).

Combining all the bounds, the desired result (4.17) follows.

In this scheme, the source message is split into two parts. The message M ′ is broadcast to

both relay and destination. The message M ′′ is decoded by relay first and then cooperatively

transmitted to the destination. Unfortunately, the above achievable rate does not outperform

the DF strategy, as shown below:

R ≤ min{I(U ;Y2|X2) + I(X1;Y2|X2, U), I(U ;Y3) + I(X1X2;Y3|U)} (4.18)

= min{I(U,X1;Y2|X2), I(X1, X2;Y3)} (4.19)

= min{I(X1;Y2|X2), I(X1X2;Y3)}. (4.20)
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where (4.20) follows from the Markov chains U − X1 − Y2 and U − X1 − Y3. Rate equation

(4.20) is the rate achieved by the decode-forward strategy.

Although not providing a higher rate, the above proposed scheme of broadcast over decode

and forward gives us a good insight on the superposition strategy. The cause of sub optimality

arises due to the fact that the messages M ′ and M ′′ even though are generated from the same

source, act as interference on each other. This limits the rate of decoding at the relay and

destination terminals. This interference would also be present if we superimpose DF and CF.

The rate achievable using the superposition strategy is investigated in the next section for the

case of Gaussian relay channels.

4.4 Achievable rate of superposition-forward scheme

In this section, we focus on the Gaussian relay channel. We show that when considering

only jointly Gaussian distribution for all the random variables involved in (4.13), superposition

does not offer higher rate than DF or CF alone. To be more specific, we will show that when

all the random variables involved are Gaussian, then RSF ≤ max(RDF , RCF ). Trivially, only

one of two cases can be true

1. Case A: RDF ≥ RCF ;

2. Case B: RCF > RDF .

It is then enough to show that in Case A, RSF ≤ RDF ; and in Case B, RSF ≤ RCF .

4.4.1 Gaussian distribution assumption

We assume that all random variables in (4.13) are zero mean and jointly Gaussian dis-

tributed. The distribution will then depend only on the variances and the cross-correlations of

the random variables. For two generic random variables X and Y , let

φX,Y :=
E {(X − E[X])(Y − E[Y ])}√

E[X2]E[Y 2]

denote the correlation coefficient between them. The following lemma is useful in deducing

correlations from known ones.
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Lemma 1. Let X − Y − Z be a Markov chain of jointly Gaussian random variables. Then

φX,Z = φX,Y φY,Z .

Proof: Assume without loss of generality that all three random variables are zero mean. We

have

φX,Z =
E[XZ]√

E[X2]E[Z2]

=
E{E[XZ|Y ]}√
E[X2]E[Z2]

=
E{E[X|Y ]E[Z|Y ]}√

E[X2]E[Z2]

=
E{
√
E[X2]/E[Y 2]φX,Y Y ·

√
E[Z2]/E[Y 2]φY,ZY }√

E[X2]E[Z2]

= φX,Y φY,Z

(4.21)

Returning to the random variables involved in RSF , we denote α = φU,V , β = φV,X2 , and

γ = φU,X1 . Using Lemma 1, we obtain from the Markov chain U − V −X2 that

δ := φX1,X2 = φV,U · φV,X2 = αβ, (4.22)

and from the Markov chain X1 − U −X2 that

ρ := φX1,X2 = φX1,U · φU,X2 = γδ = αβγ. (4.23)

Fig. 4.3 shows the codebook generation and correlation between the random variables along

with their dependencies on each other.

α

β

U(w′
b|w′

b−1),
γ X1(w

′′
b |w′

b)

δ
V (w′

b−1),

w′
b ∈ {1, 2nR1}

w′
b−1 ∈ {1, 2nR1}

w′′
b ∈ {1, 2nR2}

X2(lb|w′
b−1)

lb ∈ {1, 2nR0}

ρ

Ŷ2(lb+1|lb, w′
b, w

′
b−1)

lb+1 ∈ {1, 2nR0}

Figure 4.3 Dependency graph of random variables with correlation coefficients
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4.4.2 Main result

The main result is stated in the following theorem. Two lemmas that are needed in the

proof are stated and proved in the appendix.

Theorem 2. Let (X1, X2, Y2, Y3, Ŷ ′2 , Ŷ2, U, V, ) be a set of jointly Gaussian random variable

whose joint distribution can be factorized in the following form:

p(u, v, x1, x2, y2, y3, ŷ
′
2) = p(v)p(u|v)p(x2|v)p(x1|u)p(y2, y3|x1x2)p(ŷ′2|y2, u, x2)p(ŷ2|y2, x2),

(4.24)

where p(y2, y3|x1x2) is as given in (4.4). Let P denote the class of distributions specified by

(4.24). Let P ′ denote a subset of P with distributions that also satisfy the constraint (4.15).

We have

sup
P ′

min{I(X1;Y3, Ŷ
′
2 |X2, U) + I(U ;Y2|X2, V ), I(X1, X2;Y3)− I(Ŷ ′2 ;Y2|X1, X2, U, Y3)} (4.25)

= max{ sup
P

min{I(X1;Y2|X2), I(X1, X2;Y3)}, (4.26)

sup
P

min{I(X1; Ŷ2, Y3|X2), I(X1, X2;Y3)− I(Ŷ2;Y2|X1, X2, Y3)}}. (4.27)

Proof: The rates appearing in (4.25)–(4.27) are RSF , RDF , and RCF , respectively. Since

through the judicious choice the random variables U and V , DF and CF can be cast as special

cases of SF [5], we have RSF ≥ RDF and RSF ≥ RCF . It is then sufficient to show that

RSF ≤ max(RDF , RCF ).

Under the Gaussian assumption, the compressed version Ŷ ′2 of Y2 in (4.14) can be written

as

Ŷ ′2 = c1Y2 + c2U + c3X2 + Z ′w (4.28)

where c1, c2, c3 are constant parameters, Z ′w is Gaussian and independent of Y2, U , and X2.

Since in both (4.13) and (4.15), the three mutual information terms involving Ŷ ′2 , namely,

I(X1;Y3, Ŷ
′
2 |X2, U), I(Ŷ ′2 ;Y2|X2, X1, U, Y3), I(Ŷ ′2 ;Y2|X2, U, Y3)

are all conditioned on U and X2, the coefficients c2 and c3 do not affect the values of these

terms. Therefore we can set c2 = c3 = 0. It is also true that scaling Ŷ ′2 by a constant does not



www.manaraa.com

46

change any of the terms. So unless c1 = 0, we can assume c1 = 1, as we do in the following.

The case c1 = 0 is known as the so called partial decoding and forward scheme, which is known

to be inferior to the full DF scheme [25]. We denote the variance of Z ′w as ∆′. The amount

of compression, which is controlled by the parameter ∆′, depends on the constraint (4.15)

imposed by the relay link channel and the encoding scheme at the relay. In summary, we can

take without loss of generality

Ŷ ′2 = Y2 + Z ′w, (4.29)

The following is a broad outline of the proof. Given any rate achieved by the SF scheme,

we can find a CF scheme or a DF scheme which can achieve a rate higher than or equal to SF.

The Ŷ2 for the CF scheme is set to be statistically equal to Ŷ ′2 of the SF scheme in (4.29):

Ŷ2 = Y2 + Zw, (4.30)

where Zw is zero mean Gaussian with variance ∆ = ∆′. Such Ŷ2 would qualify as the compressed

version of Y2 in CF. This choice of Ŷ2 is enough to achieve a higher rate than SF even though

it can be suboptimal to the possible rates achievable by CF.

First, we have

I(Ŷ ′2 ;Y2|X1, X2, U, Y3) = h(Y2|X1, X2, U, Y3)− h(Y2|X1, X2, U, Y3, Ŷ
′
2) (4.31)

= h(Y2|X1, X2, Y3)− h(Y2|X1, X2, U, Y3, Ŷ
′
2) (4.32)

≥ h(Y2|X1, X2, Y3)− h(Y2|X1, X2, Y3, Ŷ
′
2) (4.33)

≥ h(Y2|X1, X2, Y3)− h(Y2|X1, X2, Y3, Ŷ2) (4.34)

= I(Ŷ2;Y2|X1, X2, Y3) (4.35)

where (4.32) is due to the Markov chain U − (X1, X2, Y3) − Y2; (4.33) uses the fact that

conditioning does not increase entropy; and (4.34) is because given (X2, U), Ŷ ′2 is statistically

equivalent to Ŷ2.

Thus, we have shown

I(X1, X2;Y3)− I(Ŷ ′2 ;Y2|X1, X2, U, Y3) ≤ I(X1, X2;Y3)− I(Ŷ2;Y2|X1, X2, Y3). (4.36)
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It then remains to be shown that

I(X1;Y3, Ŷ
′
2 |X2, U) + I(U ;Y2|X2, V ) ≤ max{I(X1;Y2|X2), I(X1; Ŷ2, Y3|X2)}. (4.37)

Depending on which one of the two terms on the right hand side is bigger, we have two

cases. In the first case,

I(X1;Y2|X2) ≥ I(X1;Y3, Ŷ2|X2) (4.38)

and we have

I(U ;Y2|V,X2) + I(X1;Y3, Ŷ ′2 |X2, U) (4.39)

= I(U ;Y2|V,X2) + I(X1;Y3, Ŷ2|X2, U) (4.40)

= I(U ;Y2|X2)− I(V ;Y2|X2) + I(X1;Y3, Ŷ2|X2, U) (4.41)

= I(X1;Y2|X2)− I(X1;Y2|X2, U)− I(V ;Y2|X2) + I(X1;Y3, Ŷ2|X2, U) (4.42)

≤ I(X1;Y2|X2)− I(X1; Ŷ2, Y3|X2, U)− I(V ;Y2|X2) + I(X1;Y3, Ŷ2|X2, U) (4.43)

= I(X1;Y2|X2)− I(V ;Y2|X2) (4.44)

≤ I(X1;Y2|X2) (4.45)

where (4.40) follows by our choice of Ŷ2 to be statistically the same as Ŷ ′2 ; (4.41) follows from

the Markov chain V − (U,X2)− Y2; (4.42) follows from the Markov chain U − (X1, X2)− Y2;

(4.43) follows from (4.38) and Lemma 2, which is stated and proved in Appendix 4.A.1; and

(4.45) follows from the fact that mutual information is nonnegative.

In the second case,

I(X1;Y2|X2) < I(X1;Y3, Ŷ2|X2) (4.46)

and we have

I(X1;Y3, Ŷ
′
2 |X2, U) + I(U ;Y2|V,X2)

= I(X1;Y3, Ŷ2|X2, U) + I(U ;Y2|V,X2) (4.47)

= I(X1;Y3, Ŷ2|X2, U) + I(U ;Y2|X2)− I(V ;Y2|X2) (4.48)

≤ I(X1;Y3, Ŷ2|X2, U) + I(U ;Y3, Ŷ2|X2)− I(V ;Y2|X2) (4.49)

= I(X1;Y3, Ŷ2|X2)− I(V ;Y2|X2) (4.50)

≤ I(X1;Y3, Ŷ2|X2) (4.51)
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where (4.47) follows by our choice of Ŷ2 to be statistically the same as Ŷ ′2 ; (4.48) follows from

the Markov chain V − (U,X2) − Y2; (4.49) follows from (4.46) and Lemma 3, which is stated

and proved in Appendix 4.A.1; (4.50) follows from the Markov chain U − (X1, X2) − Ŷ2, Y3;

and (4.51) follows from the fact that mutual information is nonnegative.

Thus we have shown (4.37) holds. And the whole proof is complete.

4.4.3 Discussion

We have shown that the SF does not outperform both DF and CF. We provide some

intuitive explanation in the following.

Observe from (4.30) that Ŷ2 is the quantized signal of Y2 in the CF scheme. The variance

of Zw is ∆, which in general could be different from ∆′, the variance of Z ′w in (4.28). From the

constraint (4.10), we have ∆ ≥ ∆CF , where

∆CF =
N1N2 +

(
N1 + a2N2

)
P1

b2P2
. (4.52)

Although the constraint is not explicitly imposed in the formulation in (4.12), it can be shown

that setting ∆ = ∆CF actually maximizes the two terms on the right hand side of (4.12), and

equalizes them:

I(X1; Ŷ2, Y3|X2) = I(X1, X2;Y3)− I(Ŷ2;Y2|X1, X2, Y3). (4.53)

It can be verified that

1. I((X1; Ŷ2, Y3|X2) is a monotonically decreasing function of ∆ (coarser compression re-

duces the useful information about X1 in Ŷ2);

2. I(Ŷ2;Y2|X1, X2, Y3) is a monotonically increasing function of ∆.

Therefore the minimum of the two functions is maximized at their crossing point, which happens

at ∆ = ∆CF . In other words, for CF, within the relay-destination link rate limit I(X2;Y3),

more compression yields higher rate over all. For the SF, however, the situation is different.

The parameter ∆′, which controls the amount of compression in (4.28) needs to be chosen to

satisfy the constraint (4.15). In particular, we have ∆′ ≥ ∆SF , where

∆SF =
(N2 + P1(1− α2γ2))(N1N2 + (N1 + a2N2)P1(1− γ2))

b2P2(1− β2)[N2 + P1(1− γ2)]
(4.54)
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In general ∆SF can be less than ∆CF ; e.g., when γ > 0, α = 1 and β = 0. In contrast to the CF

case, it is not true for SF that more compression (smaller ∆′) necessarily yields higher rate. The

intuitive reason is that the relay has two messages to transmit to the destination: the partially

decoded message carried by U and the compressed version of Y2 carried by Ŷ ′2 . Although

reducing ∆′ will provide to the destination a more faithful representation of Y2, and enlarge

the term I(X1;Y3, Ŷ
′
2 |X2, U)+I(U ;Y2|X2, V ), it will reduce the relay’s ability to cooperate with

the source through the message U , and hence enlarge the gap I(Ŷ ′2 ;Y2|X1, X2, U, Y3) from the

multiple-access cut-set bound I(X1, X2;Y3), which then becomes the rate limiting factor. The

optimum amount compression turns out to the be same as in the CF case. And superposition

of DF and CF does not help the rate, which agrees with the observation that we have made in

Section 4.3.

4.5 Numerical result

Considering an example Gaussian relay channel such that the source and the destination

are separated by a unit distance [24], and the relay is at distance d from the source and 1− d

from the destination. The channel model is shown in Fig. 4.4. The channel gain between any

two nodes is inversely proportional to their distance. So a = 1/d and b = 1/(1 − d). The

additive noises at the relay and the destination are independent but have the same variance

N1 = N2 = 1. The transmit powers are set to P1 = P2 = 5 dB. The choice of power constraint

may vary depending on the practical system analyzed. The performance as function of relay

distance d is only scaled with varying power constraints. The relative performance of different

schemes remain the same.

1

1-dd
Source Destination

Relay

Figure 4.4 Example of a Gaussian relay channel

Fig. 4.5 shows the numerical rates achievable by DF, CF and the cut set bound (4.16) as a

function of distance d of the relay from the source terminal. Depending on d, there are three

cases:
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1. When d is small (roughly d < 0.2), DF is optimal. The rate achieved by DF is equal to

I(X1, X2;Y3) the multiple-access cut-set bound. The reason is that the source message

can be fully decoded at the relay.
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Figure 4.5 Achievable rates for the Gaussian relay channel

2. For medium d (roughly 0.2 < d < 0.6), DF is not optimal, but still performs better than

CF. In this case, the rate of DF is dominated by I(X1, Y2|X2), the amount information

can be decoded at the relay, which dictates the amount of cooperation possible between

source and relay. In this region, the relay-sink channel is “poor” so that sending “finely”

compressed version of Y2 is not possible.

3. For large d (roughly 0.6 < d ≤ 1), CF out performs DF. In this region, the ability of the

relay to decode the source is weak, and it is more fruitful to send compressed version of

the relay’s observation. Only in the extreme case, d = 1, does CF actually achieve the

cut-set bound.

The rate achievable by superimposing DF and CF given by (4.13) is numerically compared

with the rates achieved by CF, DF and the cut-set bound. The mutual information terms of



www.manaraa.com

51

(4.13) are evaluated for the choice of appropriate Gaussian Random variables, according to

(4.61) and

I(U ;Y2|X2, V ) = C

(
P1
d2
γ2(1− α2)

N1 + P1
d2

(1− γ2)

)
, (4.55)

I(X1X2;Y3) = C


P1 + P2

(1−d)2 + 2ρ
√
P1P2

(1−d)
N2


 , (4.56)

I(Y2; Ŷ2|U,X1, X2, Y3) = C

(
N1

∆

)
. (4.57)

The constraint I(Ŷ2;Y2|U,X2, Y3) ≤ I(X2;Y3|V ) is evaluated to ∆′ ≥ ∆SF , where ∆SF is as

given in (4.54). The correlation terms α, β, γ and the variance ∆′ are optimizing parameters,

which control the amount of information that is decoded and the amount that is compressed.

When all the parameters have been optimized within the constraint posed by (4.54), the SF is

found to achieve the maximum of RDF and RCF , as shown in Fig. 4.6.
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Figure 4.6 Achievable rates for Gaussian relay channel. The parameters of superposition-for-
ward are optimized to maximize the achievable rate
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4.6 Conclusion

We analyzed the coding strategy of superimposing CF and DF for the Gaussian relay

channel. We note that superposition of CF and DF does not provide higher achievable rates

than the individual DF and CF for the Gaussian case. Superposition scheme achieves the best

of CF and DF rates for single relay channel. We conclude that we should look for new strategies

or look for non-Gaussian distributions for the superposition scheme, or try to find tighter upper

bounds than the cut-set bound.

We next look at the discrete memoryless network and propose a new coding scheme based on

superposition and noisy network coding. This scheme is derived for single source and multiple

source multicast networks.

4.A Appendix

4.A.1 Two lemmas needed in the proof of Theorem 2

We prove two lemmas in the following that will be useful in the proof of Theorem 2.

Lemma 2 is used in the case RDF ≥ RCF . Lemma 3 is used in the case RDF < RCF .

Lemma 2. Let (X1, X2, Y2, Y3, Ŷ2, U, V ) be jointly Gaussian random variables with joint dis-

tribution

p(u, v, x1, x2, y2, y3, ŷ2) = p(v)p(u|v)p(x2|v)p(x1|u)p(y2, y3|x1x2)p(ŷ2|y2, x2),

where p(y2, y3|x1, x2) is as given in (5.22).

If I(X1;Y2|X2) ≥ I(X1;Y3, Ŷ2|X2) then I(X1;Y2|X2, U) ≥ I(X1; Ŷ2, Y3|X2, U).

Proof: Under the Gaussian assumption, we have

I(X1;Y2|X2) =
1

2
log

{
1 +

a2P1(1− ρ2)
N1

}
(4.58)

I(X1;Y2|X2, U) =
1

2
log

{
1 +

a2P1(1− γ2)
N1

}
(4.59)

I(X1; Ŷ2, Y3|X2) =
1

2
log

{
1 + P1(1− ρ2)

(N1 + ∆) + a2N2

(N1 + ∆)N2

}
(4.60)

I(X1; Ŷ2, Y3|X2, U) =
1

2
log

{
1 + P1(1− γ2)

(N1 + ∆) + a2N2

(N1 + ∆)N2

}
(4.61)
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Obviously when ρ = 1 and hence γ = 1 (because ρ = αβγ), the lemma holds. We thus

assume that ρ < 1. Since I(X1;Y2|X2) ≥ I(X1; Ŷ2, Y3|X2), from (4.58) and (4.59) we have

a2P1(1− ρ2)
N1

≥ P1(1− ρ2)
(N1 + ∆) + a2N2

(N1 + ∆)N2
. (4.62)

Multiplying both sides with (1− γ2)/(1− ρ2), we obtain

a2P1(1− γ2)
N1

≥ P1(1− γ2)
(N1 + ∆) + a2N2

(N1 + ∆)N2
. (4.63)

It then follows that I(X1;Y2|X2, U) ≥ I(X1; Ŷ2, Y3|X2, U) from the monotonic property of the

logarithmic function.

Lemma 3. Let (X1, X2, Y2, Y3, Ŷ2, U, V ) be jointly Gaussian random variables with distribution

p(u, v, x1, x2, y2, y3, ŷ2) = p(v)p(u|v)p(x2|v)p(x1|u)p(y2, y3|x1, x2)p(ŷ2|y2, x2),

where p(y2, y3|x1, x2) is as given in (5.22).

If I(X1;Y2|X2) ≤ I(X1; Ŷ2, Y3|X2) then I(U ;Y2|X2) ≤ I(U ; Ŷ2, Y3|X2).

Proof:

Under the Gaussian variable assumptions, we have

I(X1;Y2|X2) =
1

2
log

{
1 +

a2P1(1− ρ2)
N1

}
(4.64)

I(U ;Y2|X2) =
1

2
log

{
1 +

a2P1(γ
2 − ρ2)

N1 + a2P1(1− γ2)

}
(4.65)

I(X1; Ŷ2, Y3|X2) =
1

2
log

{
1 + P1(1− ρ2)

(N1 + ∆) + a2N2

(N1 + ∆)N2

}
(4.66)

I(U ; Ŷ2, Y3|X2) =
1

2
log

{
1 +

P1(γ
2 − ρ2)[(N1 + ∆) + a2N2]

(N1 + ∆)N2 + P1(1− γ2)[(N1 + ∆) + a2N2]

}
(4.67)

It can be verified that when γ = 1, I(X1;Y2|X2) = I(U ;Y2|X2) and I(X1; Ŷ2, Y3|X2) =

I(U ; Ŷ2, Y3|X2), so that the desired result holds in this case. In the following, we assume that

γ < 1, and therefore ρ = αβγ < 1.

Since I(X1;Y2|X2) ≤ I(X1; Ŷ2, Y3|X2), it follows from (4.64) and (4.65) that

a2P1(1− ρ2)
N1

≤ P1(1− ρ2)[(N1 + ∆) + a2N2]

(N1 + ∆)N2
. (4.68)

Multiplying both sides of (4.68) with (1− γ2)/(1− ρ2) we obtain

a2P1(1− γ2)
N1

≤ P1(1− γ2)[(N1 + ∆) + a2N2]

(N1 + ∆)N2
. (4.69)
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Adding the numerator to the denominator on both sides, we obtain

a2P1(1− γ2)
N1 + a2P1(1− γ2)

≤ P1(1− γ2)[(N1 + ∆) + a2N2]

(N1 + ∆)N2 + P1(1− γ2)[(N1 + ∆) + a2N2]
. (4.70)

Multiplying both sides of (4.70) by (γ2 − ρ2)/(1− γ2), we obtain

a2P1(γ
2 − ρ2)

N1 + a2P1(1− γ2)
≤ P1(γ

2 − ρ2)[(N1 + ∆) + a2N2]

(N1 + ∆)N2 + P1(1− γ2)[(N1 + ∆) + a2N2]
(4.71)

It then follows that I(U ;Y2|X2) ≤ I(U ; Ŷ2, Y3|X2) due to the monotonic property of the loga-

rithmic function.
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CHAPTER 5. NOISY NETWORK CODING WITH SUPERPOSITION

5.1 Introduction

An N node Discrete Memoryless Network (DMN) is a network model where each node

transmits its message to a set of destination nodes. The nodes can also relay messages from

other nodes. With increasing applications in Ad-Hoc networks, Wi-Fi and sensor networks, the

DMN has gained significant importance. The DMN is the most general network model used

in studying the characteristics of cooperative communication and in multi-user information

theory. It includes many important class of channels like noiseless, erasure and deterministic

networks as special cases [29], [27], [8]. The DMN also includes the relay, broadcast, interference

and multiple access channels which are the fundamental building blocks for any multi-user

communication network.

The primary research focus in multi-user information theory is to find the capacity of

the general discrete memoryless network. The best known upper bound for the DMN is the

cut-set bound [6]. Several coding schemes have been developed that are close to optimal for

some important classes of the DMN. The achievable rates and the cut-set upper bound do not

coincide and the capacity of the DMN is not known in general. In this work, a novel scheme

is proposed which achieves a higher rate than the existing schemes in literature under specific

conditions. This reduces the gap between the achievable rate and the upper bound and is a

step towards finding the capacity of the DMN.

The existing schemes for the relay channel would be a good starting point to design novel

coding schemes for the DMN. Cover and El Gamal [5] introduced the main coding schemes

for the general discrete memoryless single relay channel. The schemes introduced in brief are

Decode Forward (DF), Compress Forward (CF) and Superposition Forward (SF).
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P (Y1, . . . , YN |X1, X2, . . . , XN )
(X1, Y1)

(X2, Y2)

(Xk, Yk)

(XN , YN )

. . .

. . .

Figure 5.1 An N -node discrete memoryless network (DMN).

• In decode forward, the relay decodes the message transmitted from the source and coher-

ently transmits to the destination.

• In compress forward, the relay compresses the received signal without decoding and helps

the destination decode at a higher rate. The compress-forward scheme achieves any rate

less than [5, Theorem 6]

RCF = sup I(X1; Ŷ2, Y3|X2), such that I(X2;Y3) ≥ I(Ŷ2;Y2|X2, Y3) (5.1)

where supremum is taken over all joint probability distributions of the form

p(x1, x2, y2, y3, ŷ2) = p(x1)p(x2)p(y2, y3|x1, x2)p(ŷ2|y1, x2). (5.2)

The relay uses Wyner-Ziv [41] binning to send maximum information through the relay-

destination link.

• Superposition-forward combines decode-forward and compress forwad using superposi-

tion. Decode-forward and compress-forward are special cases of superposition-forward.

The superposition-forward scheme achieves the optimal rate for all the special cases where

the capacity of the relay channel is known.

• El Gamal, Mohseni, and Zahedi [25] put forth an equivalent characterization of the CF

scheme. That is, it achieves any rate less than

RCF = sup min{I(X1; Ŷ2, Y3|X2), I(X1, X2;Y3)− I(Ŷ2;Y2|X1, X2, Y3)} (5.3)
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where supremum is still taken over all joint probability distributions of the same form as

in (5.2). This equivalent representation naturally extends to the networks case.

Lim et al. [36] introduced a general lower bound for the discrete memoryless network using

network coding [28] and the equivalent characterization of compress-forward. The new scheme

is termed “Noisy network coding”. The key ideas are message repetition encoding, no Wyner-

Ziv [41] binning at the relay and joint decoding at the destination. The scheme achieves a higher

rate than the better known compress-forward scheme for networks with multiple relays [43].

The noisy network coding scheme naturally extends to single and multiple source multicast

networks.

We improve the achievable rates of the noisy network coding scheme by allowing the nodes to

decode a part of message and use the message to make a better compressed signal to be relayed.

The superposition noisy network coding scheme combines superposition forward with network

coding. Modifications are made to the superposition-forward scheme to make it applicable to

the network coding scenario. Specifically, the input distributions at each node are chosen to be

independent.

In superposition noisy network coding, the message at each node is split in two parts. A

part of the message is required to be decoded at each relay after every block. The other part of

the message is transmitted over b blocks using repetition coding. The relay nodes use compress-

forward to transmit this message. The destination nodes decode the messages after b blocks of

transmission using joint decoding. Similar to noisy network coding, our scheme does not use

Wyner-Ziv encoding at the relay, employs repetition encoding for a part of the message and

uses joint decoding. These techniques have been shown to improve the achievable rates [36].

For simplicity and ease of understanding, the superposition noisy network coding scheme

is first explained for a simple 3 node relay channel. In Section 5.2, the scheme is designed

and achievable rates derived for a single relay channel. In Section 5.3, the scheme is further

extended to single source multicast network where there is only a single source node transmit-

ting information to a set of destination nodes. All other nodes act as relays. In Section 5.4,

the superposition noisy network coding scheme is designed for multiple source multicast net-
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Relay

Destination
X1

Y2
X2

Y3

p(y2, y3|x1, x2)Source

Figure 5.2 Discrete memoryless relay channel

works. This scheme is then derived for discrete memoryless single relay channel and two-way

relay channel. The rates achieved are numerically compared to existing schemes to quantify

performance.

5.2 Superposition noisy network coding for single relay channel

Consider the discrete memoryless relay channel p(y2, y3|x1, x2) shown in Fig. 5.2. The

source node is terminal 1, relay node is terminal 2, and destination is terminal 3. xk and yk

denote the transmitted and received symbol at terminal k respectively.

The rate achieved by superposition-forward scheme [5, Theorem 7] for discrete memoryless

relay channel is

RSF = sup(min{I(X1;Y3, Ŷ2|X2, U) + I(U ;Y2|X2, V ),

I(X1, X2;Y3)− I(Ŷ2;Y2|U,X1, X2, Y3)}) (5.4)

where the supremum is over all joint probability distributions of the form

p(u, v, x1, x2, ŷ2, y3, y2) = p(v)p(u|v)p(x1|u)p(x2|v)p(y2, y3|x1, x2)p(ŷ2|x2, y2, u) (5.5)

subject to the constraint

I(X2;Y3|V ) ≥ I(Ŷ2;Y2|X2, Y3, U). (5.6)

Network coding requires the input distribution at each node to be independent [44]. Thus,

we modify the superposition forward strategy such that the auxiliary random variables U and

V are generated independent of each other. This may lead to a rate loss compared to original
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scheme under certain conditions. This happens since the maximization is now over all joint

probability distributions of the form

p(u, v, x1, x2, y2, y3, ŷ2) = p(v)p(u)p(x1|u)p(x2|v)p(y2, y3|x1, x2)p(ŷ2|x2, y2, u) (5.7)

which is a subset of (4.14).

For a single relay channel, we may choose the input distribution to be dependent and

achieve the same rates as superposition-forward scheme. The rate achieved by superposition

noisy network coding scheme for a single relay channel is stated in Theorem 3. The encoding

and decoding process of the coding scheme is explained followed by the analysis of probability

of error.

Theorem 3. For any discrete memoryless relay channel, the rate supP R
′ +R′′ is achievable,

where

R′ < min{I(U1;Y2|X2), I(U1, V2;Y3)}. (5.8)

R′′ < min{I(X1; Ŷ2, Y3|X2, U1), I(X1, X2;Y3|U1, V2)− I(Ŷ2;Y2|U1, X1, X2, Y3)}. (5.9)

and the supremum is taken over all joint probability distributions of the form

p(u1, v2, x1, x2, y2, y3, ŷ2) = p(u1)p(v2)p(x1|u1)p(x2|v2)p(y2, y3|x1, x2)p(ŷ2|x2, y2, u1) (5.10)

Proof. The message m at the source is split in two parts m′ and m′′. m′ is further split into b

messages m′j . The message m′j ∈ [1 : 2nR
′
] is transmitted over every block j and the message

m′′ ∈ [1 : 2nbR
′′
] is transmitted over b blocks of transmission. The source node transmits

x1,j(m
′′|m′j) for each block j ∈ [1 : b]. xk,j or xkj is the message transmitted by node k in block

j. After block j, the relay decodes the message m̂′j and maps it to a v2,j+1(m̂
′
j) codeword. It

also finds a “compressed” version ŷ2j(lj |lj−1, m̂′j , m̂′j−1) of the relay output y2j conditioned on

x2j(lj−1|m̂′j−1) and u1j(m̂
′
j). The relay transmits a codeword x2,j+1(lj |m̂′j) in the next block.

After b blocks of transmission, the decoder jointly decodes the message m′′ ∈ [1 : 2nbR] using

(y31, . . . ,y3b) received over b blocks simultaneously. The decoder has decoded all the messages

m′j by sliding window decoding for each block j ∈ [1 : b]. The details are as follows.
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Block 1 2 3 · · · b− 1 b

U1 u11(m
′
1) u12(m

′
2) u13(m

′
3) . . . u1,b−1(m

′
b−1) u1b(m

′
b)

V2 v21(1) v22(m
′
1) v23(m

′
2) . . . v2,b−1(m

′
b−2) v2b(m

′
b−1)

X1 x11(m
′′|m′1) x12(m

′′|m′2) x13(m
′′|m′3) . . . x1,b−1(m

′′|m′b−1) x1b(m
′′|m′b)

Ŷ2 ŷ21(l1|1, 1,m′1) ŷ22(l2|l1,m′1,m
′
2) ŷ23(l3|l2,m′2,m

′
3) . . . ŷ2,b−1(lb−1|lb−2,m

′
b−2,m

′
b−1) ŷ2b(lb|lb−1,m

′
b−1,m

′
b)

X2 x21(1|1) x22(l1|m′1) x23(l2|m′2) . . . x2,b−1(lb−2|m′b−2) x2b(lb−1|m′b−1)

Y3 ∅ m̂′1 m̂′2 . . . m̂′b−2 m̂′b−1,m̂
′′

Table 5.1 Superposition noisy network coding for the relay channel.

Codebook generation: Fix p(u1)p(x1|u1)p(v2)p(x2|v2)p(ŷ2|y2, x2, u1). The codebooks are gener-

ated randomly and independently for each block

1. Generate 2nR
′

sequences u1j(m
′
j), m

′
j ∈ [1 : 2nR

′
], j ∈ [1 : b] each with probability

∏n
i=1 pU1(u1,(j−1)n+i).

2. For every u1j(m
′
j), generate 2nbR

′′
sequences x1j(m

′′|m′j), m′′ ∈ [1 : 2nbR
′′
], each with

probability
∏n
i=1 pX1|U1

(x1,(j−1)n+i|u1,(j−1)n+i(m′j)).

3. Generate 2nR
′

sequences v2j(m
′
j−1), m

′
j−1 ∈ [1 : 2nR

′
], j ∈ [1 : b] each with probability

∏n
i=1 pV2(v2,(j−1)n+i).

4. For every v2j(m
′
j−1), generate 2nR̂2 sequences x2j(lj−1|m′j−1), lj−1 ∈ [1 : 2nR̂2 ],m′j−1 ∈

[1 : 2nR
′
], each with probability

∏n
i=1 pX2|V2(x2,(j−1)n+i|v2,(j−1)n+i(m′j−1)).

5. For every x2j(lj−1|m′j−1), and u1j(m
′
j), generate 2nR̂2 sequences ŷ2j(lj |lj−1,m′j−1,m′j),

lj , lj−1 ∈ [1 : 2nR̂2 ], m′j−1,m
′
j ∈ [1 : 2nR

′
], each with probability

∏n
i=1 pŶ2|X2,U1

(ŷ2,(j−1)n+i|x2,(j−1)n+i(lj−1,m′j−1), u1,(j−1)n+i(m′j)).

The codebook is

Cj =
{
u1j(m

′
j),v2j(m

′
j−1),x1j(m

′′|m′j),x2j(lj−1|m′j−1), ŷ2j(lj |lj−1,m′j−1,m′j)

: m′j ,m
′
j−1 ∈ [1 : 2nR

′
],m′′ ∈ [1 : 2nbR

′′
], lj , lj−1 ∈ [1 : 2nR̂2 ]

}
(5.11)

for j ∈ [1 : b].

Encoding: The messages transmitted and decoded at each node in superposition noisy network

coding is shown in table I. m′j is the message transmitted in block j and m′′ is the message



www.manaraa.com

61

transmitted over b blocks. The relay, upon receiving y2j at the end of block j ∈ [1 : b], finds

an index m′j such that

(u1j(m
′
j),y2j ,x2j(lj−1|m̂′j−1)) ∈ T (n)

ε′ ,

where x2j(lj−1|m̂′j−1) is the symbol transmitted by the relay in block j and T (n)
ε′ is a set of

ε′-typical sequences [2]. The relay then finds an index lj such that

(u1j(m̂
′
j), ŷ2j(lj |lj−1, m̂′j , m̂′j−1),y2j ,x2j(lj−1|m̂′j−1)) ∈ T (n)

ε′ ,

where l0 = 1 by convention. If there is more than one such index, choose one of them at

random. If there is no such index, choose an arbitrary index at random from [1 : 2nR̂2 ]. The

codeword pair (x1j(m
′′|m′j),x2j(lj−1|m′j−1)) is transmitted in block j ∈ [1 : b].

Decoding: Let ε > ε′. After block j, the decoder uses y3(j−1) and y3j to find a unique message

m̂′j−1 ∈ [1 : 2nR
′
]. The unique message satisfies the following two conditions simultaneously

(u1j(m
′
j),v2j(m̂

′
j−1),y3(j−1)) ∈ T (n)

ε

(v2j(m
′
j−1),y3j) ∈ T (n)

ε

At the end of block b, after decoding the messages m′j , j ∈ [1 : (b − 1)] the decoder finds a

unique message m̂′′ ∈ [1 : 2nbR
′′
] such that

(u1j(m̂
′
j),v2j(m̂

′
j−1), ŷ2j(lj |lj−1, m̂′j−1, m̂′j),x1j(m

′′
j |m̂′j−1),x2j(lj−1|m̂′j−1),y3j) ∈ T (n)

ε

for all j ∈[1 : b]

for some l1, l2, . . . , lb. If there is none or more than one such message, it declares an error.

Analysis of the probability of error: Let {M ′j}, denote the set of messages sent at the source

node for all j ∈ [1 : (b− 1)]. To bound the probability of error in decoding the messages {M ′j},

assume without loss of generality that {M ′j = 1, j = 1, . . . , b}. Define

E2{m′j}(0) :=
{

(U1j(m
′
j),Y2j ,X2j(lj−1|m′j−1)) 6∈ T (n)

ε′
}
,

E2{m′j}(1) :=
{

(U1j(m
′
j),Y2j ,X2j(lj−1|m′j−1)) ∈ T (n)

ε′ ,∀m′j 6= 1
}
.

E2{m′j}(0) is the error event when the relay does not find any jointly typical message m′j .

E2{m′j}(1) is the error event where the relay finds a jointly typical message m′j 6= 1 different
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from what was transmitted. The probability of error in decoding the message m′j at the relay

is upper bounded by

P(E2) ≤ P
( b⋃

j=1

{E2{m′j}(1) ∪ E{m′j}(0)}
)

The error event at each block can be analyzed independently assuming the messages have

been decoded correctly till the previous block. The total probability of error would then be

(b+ 1) times the maximum block probability error.

By law of large numbers and conditional typicality lemma [2], the maximum probability of

error at each block is

• P(E2{m′j}(0))→ 0 as n→∞

• Assuming the messages have been decoded correctly till the previous block,

P
(
E2{m′j}(1)|E

c
2{m′j}(0)

)
→ 0 as n→∞ if

R′ ≤ I(U1;Y2|X2) (5.12)

To bound the probability of error in decoding the message m′j at the destination. Define

the events

E3{m′j}(0) :=
{

(U1,j(m
′
j),V2,j(m

′
j−1),Y3j) 6∈ T (n)

ε

}⋃{
(V2,(j+1)(m

′
j),Y3,(j+1)) 6∈ T (n)

ε ,
}
.

E3{m′j}(1) :=
{

(U1,j(m
′
j),V2,j(m

′
j−1),Y3j) ∈ T (n)

ε

}⋃{
(V2,(j+1)(m

′
j),Y3,(j+1)) ∈ T (n)

ε , ∀m′j 6= 1
}
.

E3{m′j}(0) is the error event when the destination does not find any jointly typical message

m′j . E3{m′j}(1) is the error event where the destination finds a jointly typical message m′j 6= 1

different from what was transmitted. The probability of error in decoding the message m′j at

the destination is then upper bounded by

P(E2) ≤ P
( b⋃

j=1

{E2{m′j}(1) ∪ E{m′j}(0)}
)

Once again, we can analyze the error event for each block independently assuming all the

messages till the previous block have been decoded correctly by the destination.

• By law of large numbers, P(E3{m′j}(0))→ 0 as n→∞
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• Since the codebooks are generated independently for each block, the two events of E3{m′j}(1)
are independent. Thus, by conditional typicality lemma [2], P

(
E3{m′j}(1)|E

c
3{m′j}(0)

)
→ 0

as n→∞ if

R′ ≤ I(U1;Y3|V2) + I(V2;Y3) = I(U1, V2;Y3). (5.13)

Combining (5.12) and (5.13), and for large b, the following rate is achievable

R′ < min{I(U1;Y2|X2), I(U1, V2;Y3)}

After decoding the messages m′j for j ∈ [1 : (b − 1)], the destination decodes the message

M ′′ after b blocks. The probability of error analysis for message M ′′ is similar to the noisy

network coding scheme [36], given the partial information of the messages m′j . The probability

of error analysis is explained here in brief.

Let M ′′ be the message sent at the source node over b blocks and Lj denote the indices

chosen by the relay at block j ∈ [1 : b]. To analyze the probability of error in decoding the

unique message M ′′, define

E0 :=
b⋃

j=1

{
(U1j(m̂

′
j), Ŷ2j(lj |Lj−1, m̂′j , m̂′j−1),Y2j ,X2j(Lj−1|m̂′j−1)) 6∈ T (n)

ε′ ∀lj
}
,

Em′′ :=
{

(U1j(m̂
′
j),V1j(m̂

′
j−1), Ŷ2j(lj |lj−1, m̂′j−1, m̂′j),X1j(m

′′
j |m̂′j−1),

X2j(lj−1|m̂′j−1),Y3j) ∈ T (n)
ε , j ∈ [1 : b] for some l1, l2, . . . , lb

}
.

To bound the probability of error, assume without loss of generality that M ′j = 1 for all j

and M ′′ = 1. Assume all the M ′j ’s have been correctly decoded as 1 for sufficiently large n and

R′ < min{I(U1;Y2|X2), I(U1, V2;Y3)}. Then the probability of error is upper bounded by

P(E) ≤ P(E0) + P(Ec0 ∩ Ec1′′) + P(∪m′′ 6=1Em′′)

• By the covering lemma [2], P(E0)→ 0 as n→∞, if

R̂2 > I(Ŷ2;Y2|X2, U). (5.14)

• By conditional typicality lemma, P(Ec0 ∩ Ec1′′)→ 0 as n→∞.



www.manaraa.com

64

• To bound P(∪m′′ 6=1Em′′), define the events

Aj(m′′, lj−1, lj) :=
{

(X1j(m
′′|1′),U1j(1

′),V1j(1
′), Ŷ2j(lj |lj−1, 1′, 1′),

X2j(lj−1|1′),Y3j) ∈ T (n)
ε

}
.

for j ∈ [1 : b], m′′ ∈ [1 : 2nbR
′′
], and lj−1, lj ∈ [1 : 2nR̂2 ]. Then, by the independence of

codebooks in each block and the memoryless property of the channel, we upper bound

the probability of error in decoding message m′′ over all possible choices of lj made at

the relay and over all blocks j.

Following an analysis similar to [36], it can be shown that

∑

m′′ 6=1

∑

lb

b∏

j=2

P(Aj(m′′, lj−1, lj) | Lj−1 = Lj = 1)→ 0

as n→∞, provided that

R′′ <
b− 1

b
(min{I1, I2 − R̂2})−

1

b
R̂2.

where

I1 = I(X1, Ŷ2;Y3|X2, U1, V2)

I2 = I(X1, X2;Y3|U1, V2) + I(Ŷ2;X1, Y3|X2, U1).

Finally, by eliminating R̂2 > I(Ŷ2;Y2|X2, U1) and letting b→∞, we have

R′′ < min{I(X1; Ŷ2, Y3|X2, U1), I(X1, X2;Y3|U1, V2)− I(Ŷ2;Y2|U1, X1, X2, Y3)}.

The superposition noisy network coding scheme has been designed and analyzed for a single

relay channel. It is in general advantageous to decode extra information available at the relay

and use it to transmit more information to destination. The superposition noisy network coding

scheme achieves the same rate as compress forward when the relay is ”close” to the destination.

The rates achieved by superposition noisy network coding are higher than compress forward

but less than those achieved by [5, Theorem 7] when the relay is ”close” to the source. The
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loss in performance arises due to the constraint that U1 and V2 are forced to be independent of

each other. The superposition noisy network coding scheme is now extended to single source

multicast networks.

5.3 Superposition noisy network coding for single source multicast

networks

We now describe the superposition noisy network coding scheme for a single source discrete

memoryless multicast networks (DMN-MC) p(y2, . . . , yN |xN ). Source terminal 1 splits the

message in two parts m′ and m′′ and transmits using superposition forwarding. The message

m′ is transmitted in the same fashion decode-forward is extended to multicast relay networks

[24], [23]. The scheme is modified to make the input distributions at each node independent of

each other. After decoding the partial information m′, the message m′′ is decoded using noisy

network coding [36] given the partial information.

Theorem 4. For a discrete memoryless single source multicast network p(y2, . . . , yN |xN ), the

rate R′ +R′′ is achievable if there exists some joint pmf

p(v1)p(x1|v1)
∏N
k=2 p(vk)p(xk|vk)p(ŷk|yk, xk, vNk−1) such that

R′ < min
k
I(V k−1;Yk|Xk, V

N
k )

R′′ < min
S

(
I(X(S); Ŷ (Sc), Yk|X(Sc), V N )− I(Ŷ (S);Y (S)|XN , Ŷ (Sc), Yk, V N

k−1)
)

where k ∈ D the set of destination nodes. The source node is terminal 1 and the set of

destination nodes D ⊆ [2, N ]. The minimum is over all possible cut-sets for node k.

Proof. The encoding and decoding process is similar to superposition noisy network coding for

single relay channel. The relay nodes use an extension of decode-forward to multicast networks.

The partial message is decoded at each of the nodes {2 : (k − 1)}, and coherently transmitted

to node k. The node k waits for k − 1 transmissions to decode the partial information. After

decoding the partial message, the remaining message is decoded using noisy network coding.

The coding scheme is first explained for a DMN with a single destination node N . It is then

extended to networks with a set of destination nodes, DMN-MC. An example of a four node
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discrete memoryless multicast network is shown in Fig. 5.3. This example would be used to

explain the encoding and decoding process of superposition noisy network coding.

2 3

1 4
X1

Y2 : X2 Y3 : X3

Y4 : X4

DestinationSource

Figure 5.3 Four node discrete memoryless relay network

Codebook generation: Fix p(v1)p(x1|v1)p(vk)p(xk|vk)p(ŷk|yk, xk, vNk−1) for k ∈ (2 : N). The

codebooks are generated randomly and independently for each block j ∈ [1 : b].

1. Generate 2nR
′

sequences v1j(m
′
j), m

′ ∈ [1 : 2nR
′
], each according to

∏n
i=1 pV1(v1,(j−1)n+i).

2. For each v1j(m
′
j), generate 2nbR

′′
sequences x1j(m

′′|m′j), m′′ ∈ [1 : 2nbR
′′
], each according

to
∏n
i=1 pX1|V1(x1,(j−1)n+i|v1,(j−1)n+i(m′j)).

3. Similarly, for each relay terminal k ∈ [2 : N − 1], generate 2nR
′

sequences vkj(m
′
j−k+1),

m′j−k+1 ∈ [1 : 2nR
′
], each according to

∏n
i=1 pVk(vk,(j−1)n+i). We can assume VN = φ

without loss of generality and to simplify notations.

4. For every vkj(m
′
j−k+1), k ∈ [2 : N − 1] generate 2nR̂2 sequences xkj(lk,j−1|m′j−k+1),

lk,j−1 ∈ [1 : 2nR̂2 ],m′j−k+1 ∈ [1 : 2nR
′
], each according to the distribution

∏n
i=1 pXk|Vk(xk,(j−1)n+i|vk,(j−1)n+i(m′j−k+1)).

5. For every xkj(lk,j−1|m′j−k+1), lk,j−1 ∈ [1 : 2nR̂2 ] and v(k−1),j(m′j−k+2), . . . ,v(N−1),j(m′j−N+2),

m′j ∈ [1 : 2nR
′
], generate 2nR̂2 sequences

ŷkj(lk,j |lk,j−1,m
′(j−N+2)
j−k+2 ), lk,j ∈ [1 : 2nR̂2 ], each according to

∏n
i=1 pŶk|Xk,V

N−1
k−1

(ŷk,(j−1)n+i|xk,(j−1)n+i(lk,j−1,m′j−k+1), v
N−1
k−1,(j−1)n+i(m

′(j−N+2)
j−k+2 )).

This defines the codebook

Cj =
{
v1j(m

′
j),x1j(m

′′|m′j),vkj(m′j−k+1),xkj(lk,j−1|m′j−k+1), ŷkj(lk,j |lk,j−1,m
′(j−N+2)
j−k+2 )

: m′j ,m
′
j−k+1 ∈ [1 : 2nR

′
],m′′ ∈ [1 : 2nbR

′′
], lk,j , lk,j−1 ∈ [1 : 2nR̂2 ]

}
(5.15)
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Block 1 2 3 · · · j − 1

V1 v11(m
′
1) v12(m

′
2) v13(m

′
3) . . . v1,j−1(m

′
j−1)

X1 x11(m
′′|m′1) x12(m

′′|m′2) x13(m
′′|m′3) . . . x1,j−1(m

′′|m′j−1)

V2 v21(1) v22(m
′
1) v23(m

′
2) . . . v2,j−1(m

′
j−2)

X2 x21(1|1) x22(l21|m′1) x23(l22|m′2) . . . x2,j−1(l2,j−2|m′j−2)

Ŷ2 ŷ21(l21|1, 1,m′1), l21 ŷ22(l22|l21,m′1,m
′
2), l22 ŷ23(l23|l22,m

′3
1 ), l23 . . . ŷ2,j−1(l2,j−1|l2,j−2,m

′(j−3)
j−1 ), l2,j−1

V3 v31(1) v32(1) v33(m
′
1) . . . v3,j−1(m

′
j−3)

X3 x31(1|1) x32(l31|m′1) x33(l32|m′1) . . . x3,j−1(l3,j−2|m′j−3)

Ŷ3 ŷ31(l31|1, 1,m′1), l31 ŷ32(l32|l31, 1,m′1), l32 ŷ33(l33|l32,m′1,m
′
2), l33 . . . ŷ3,j−1(l3,j−1|l3,j−2,m

′
j−2,m

′
j−3), l3,j−1

Y4 ∅ ∅ m̂′1 . . . m̂′j−3

Table 5.2 Superposition noisy network coding for a four node DMN.

for j ∈ [1 : b] and k ∈ [2 : N − 1].

Encoding: Let m′j be the message to be sent in block j and m′′ be the message to be sent over

b blocks. The relay node k, upon receiving yk(j+k−2) at the end of block j+k−2 ∈ [1 : b], finds

an estimate m′kj of the message m′j . The relay also finds an estimate of the compressed signal

ŷk,j+k−2(lk,j+k−2|lk,j+k−3,m
′(j+k−N)
j ). In block j + k − 1, it transmits xk,j+k−1(lk,j+k−2|m′kj).

An example of a four node discrete memoryless multicast network is shown in Fig. 5.3. The

messages transmitted and decoded for this network is explained in table 5.2.

Decoding and probability of error analysis: At the end of block j+ k− 2, node k finds a unique

message m′j such that

(V1j(m
′
j),V2j(m̂

′
j−1), . . . ,Vk−1,j(m̂

′
j−k+2), . . . ,VNj(m̂

′
j−N+1),Xkj(lk,j−1|m′j−k+1),Ykj) ∈ T (n)

ε′ ,

(V2,j+1(m
′
j), . . . ,Vk,j+1(m̂

′
j−k+2), . . . ,VN,j+1(m̂

′
j−N+2),Xk,j+1(lk,j |m′j−k+2),Yk,j+1) ∈ T (n)

ε′ ,

...

(Vk−1,j+k−2(m
′
j), . . . ,VN,j+k−2(m

′
j+k−N−1),Xk,j+k−2(lk,j+k|m′j−1),Yk,j+k−2) ∈ T (n)

ε′ .

The symbols VN
k transmitted by the nodes after k are already known to terminal k. In

fact, node k instructs the terminals what to transmit in future blocks.

By the independence of codebooks, the Law of large numbers and joint typicality lemma,

it can be shown that the probability of error in decoding the message m′j at relay node k tends

to 0 as n→∞, provided that

R′ < min
k
I(V k−1

1 ;Yk|Xk, V
N
k ) (5.16)

The minimum is over all possible cutsets for the relay k.
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Each relay node k also finds an index lk,j after block j such that

(Vk−1,j(m̂
′
j−k+2), . . . ,VN,j(m̂

′
j−N+1), . . . , Ŷk,j(lk,j |lk,j−1, m̂

′(j−N+2)
j−k+2 ),

Ykj ,Xkj(lk,j−1|m̂′j−k+1)) ∈ T
(n)
ε′

where l0 = 1 by convention. If there is more than one such index, choose one of them at

random. If there is no such index, choose an arbitrary index at random from [1 : 2nR̂2 ]. Note

that Vk−1,j(m′j−k) is decoded at node k after block j.

By covering lemma, the probability of error goes to 0 as n→∞ if

R̂k > I(Ŷk;Yk|Xk, V
N
k−1)

The codeword (x1j(m
′′|m′j),xkj(lk,j−1|m′j+k−1)) is transmitted in block j ∈ [1 : b].

For decoding the message m′′ at the end of b blocks, assume without loss of generality that

L1 = · · · = Lb = 1, where Lj := (L1j , . . . , LNj). We also assume the messages m′j transmitted

were all 1’s and were decoded correctly for all the blocks j. The probability of error analysis is

similar to [36], [2] conditioned on the decoded messages m′.

To bound the probability of error in decoding the message m′′, define the event

Aj(m′′, lj−1, lj ,~1) :=
{

(X1j(m
′′
1|1), . . . ,XNj(lN,j−1|~1),V1j(1

′), . . . ,VNj(1
′),

Ŷ2j(l2j |l2,j−1,~1), . . . , ŶNj(lNj |lN,j−1,~1),YNj) ∈ T (n)
ε

}

for m′′ 6= 1 and all lj .

Using the independence of codebooks for each block j and the memoryless property of the

channel, the probability of error event can be upper bounded over all possible choices of indices

lk,j at the relay for every block j.

Following an analysis similar to [36], it can be shown that

∑

m′′ 6=1

∑

lb

b∏

j=2

P(Aj(m′′, lj−1, lj))→ 0

which tends to zero as n→∞ if

R′′ <
b− 1

b

(
min
S

(
I1(S) + I2(S)−

∑

k∈S
R̂k

))
− 1

b

(
N−1∑

k=2

R̂k

)
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The minimum is over S ⊆ [1 : N ] such that N ∈ Sc and

I1(S) := I(X(S); Ŷ (Sc), YN |X(Sc), V N ),

I2(S) :=
∑

k∈S
I(Ŷk; Ŷ (Sc ∪ {k′ ∈ S : k′ < k}), YN , XN |Xk, V

N
k−1).

By eliminating R̂k > I(Ŷk;Yk|Xk, V
N
k−1) and letting b → ∞, the probability of error tends

to zero as n→∞ if

R′′ < min
S

(
I1(S) + I2(S)−

∑

k∈S
I(Ŷk;Yk|Xk, V

N
k−1)

)

Finally, note that

I2(S)−
∑

k∈S
I(Ŷk;Yk|Xk, V

N
k−1) = −I(Ŷ (S);Y (S)|XN , Ŷ (Sc), YN , V N

k−1).

Therefore, the probability of error tends to zero as n→∞ if

R′′ < min
S

(
I(X(S); Ŷ (Sc), YN |X(Sc), V N )− I(Ŷ (S);Y (S)|XN , Ŷ (Sc), YN , V N

k−1)
)

(5.17)

for all S ⊆ [1 : N ] such that N ∈ Sc.

The rate achieved by the single destination node N using superposition noisy network coding

is

R′ < min
k
I(V k−1;Yk|Xk, V

N
k )

R′′ < min
S

(
I(X(S); Ŷ (Sc), YN |X(Sc), V N )− I(Ŷ (S);Y (S)|XN , Ŷ (Sc), YN , V N

k−1)
)

For multicast network with a set of destination nodes, the relay function remains the same

as the single destination case. The partial message is decoded at all the nodes. Each destination

node also decode the superimposed message m′′ after b blocks using the decoding scheme for

the single terminal case. The probability of error→ 0 as n→ 0 if the rates for each destination

node d ∈ D satisfies

R′ < min
k
I(V k−1;Yk|Xk, V

N
k )

R′′ < min
S

(
I(X(S); Ŷ (Sc), Yd|X(Sc), V N )− I(Ŷ (S);Y (S)|XN , Ŷ (Sc), Yd, V N

k−1)
)
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for all d ∈ D, the set of destination nodes. The minimum is over all possible cut-sets for

node d.

The achievable rate is also maximized over all possible permutations of the order in which

the relay nodes decode the messages. Depending on the channel conditions, a relay node may

be able to decode the source message at a higher rate and coherently transmit to subsequent

relays. The order in which the relays decode the messages should be chosen such that the

achievable rate of the channel is maximized.

This derives the achievable rate by superposition noisy network coding for single source

discrete memoryless multicast networks.

5.4 Superposition noisy network coding for multiple source multicast

networks

The superposition noisy network coding scheme is generalized to an N node discrete memo-

ryless multiple source multicast network p(yN |xN ), [36] shown in Fig. 5.4. In the general setup

each node sends its independent message to a set of destination nodes while acting as relays

for messages from other sources.

A general assumption is made on the multiple source multicast network to make the appli-

cation of superposition noisy network coding easier. The source nodes are restricted not to act

as relays. This is a reasonable assumption since the special cases that we are mainly interested

do not require the source to act as relays. Two-way relay channel and interference relay channel

are good examples. Let the nodes 1 to k0 be the source nodes that do not relay the messages

of other users. The nodes can act as destination and decode messages transmitted by other

users.

The channel model is now similar to single source multicast network with a replacement of

the source node with k0 independent nodes. The partial information is transmitted the same

way decode-forward is extended for the single source multicast network in Section 5.3. The

relay decodes the message from all the sources using the decoding scheme of an m-user multiple

access channel [6]. After decoding the partial information from the source nodes, the relay uses
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P (Y1, . . . , YN |X1, X2, . . . , XN )

(Xk0+1, Yk0+1)

(XN , YN )

(X1, Y1)

(X2, Y2)

...

(Xk0
, Yk0

)

. . .

Figure 5.4 An N -node discrete memoryless network with k0 sources.

binning to transmit the decoded information [30]. Further relays and destination nodes decode

the message in the same multiple access fashion. The relays that have decoded the messages

act as source nodes and coherently transmit the partial information. The remaining message

is superimposed and decoded using noisy network coding.

Theorem 5. For an N node discrete memoryless multiple source multicast network, the sum of

the rates R′+R′′ is achievable for any probability distribution
∏k0
k=1 p(vk)p(xk|vk)

∏N
k=k0+1 p(vk)p(xk|vk)p(ŷk|yk, xk, vNk−1).

The closure of the convex hull of the sum of rate vectors is achievable

R′(S) < min
S
I(V (S);Yk|Xk, V (Sc))

R′′(S) < min
S

(
I(X(S); Ŷ (Sc), YN |X(Sc), V N )− I(Ŷ (S);Y (S)|XN , Ŷ (Sc), YN , V N

k−1)
)

where k0 is the number of source nodes, and the maximum is over all possible cut-sets S ⊂

{1, . . . , k0, . . . , k − 1}.

Proof. Codebook generation: Fix
∏k0
k=1 p(vk)p(xk|vk)

∏N
k=k0+1 p(vk)p(xk|vk)p(ŷk|yk, xk, vNk−1).

We randomly and independently generate a codebook for each block.

1. For each j ∈ [1 : b] and k ∈ [1 : k0], generate 2nR
′
k sequences vk,j(m

′
k), m

′
k,j ∈ [1 : 2nR

′
k ].

each according to
∏n
i=1 pVk(vk,(j−1)n+i)

2. For each vk,j(m
′
k), j ∈ [1 : b] and k ∈ [1 : k0], generate 2nbR

′′
k sequences xk,j(m

′′
k|m′k),

such that m′′k ∈ [1 : 2nbR
′′
k ], m′k ∈ [1 : 2nbR

′
k ]. The sequences are generated independently
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according to the distribution

∏n
i=1 pXk|Vk(xk,(j−1)n+i|vk,(j−1)n+i(m′k))

3. For all relay nodes k ∈ [k0 + 1 : N ] generate 2nR̃
′
k codewords vk,j(κj−k+1(m

′k0
1 )). The

rate R̃′k is chosen such that

R̃′k ≥ max
d∈D

I(Vk;Yd|V N
k−1)

The maximum is over D the set of all destination nodes. κj−k+1(m
′k0
1 ) is the bin index of

the messages m
′k0
1 decoded at the relay k during block j. We drop the subscript j+k−1

for simplicity. The relay and block of each index would be evident from the subscripts of

the symbol v.

4. For each vk,j(κ(m
′k0
1 )) and k ∈ [k0 + 1 : N ], generate 2nR̂k sequences xk,j(lk,j−1|κ(m

′k0
1 )),

such thatm′k ∈ [1 : 2nR
′
k ], lk,j−1 ∈ [1 : 2nR̂k ], each according to the probability distribution

∏n
i=1 pXk|Vk(xk,(j−1)n+i|vk,(j−1)n+i(κ(m

′k0
1 ))).

5. For each node k ∈ [k0 + 1 : N ] and each xk,j(lk,j−1|κ(m
′k0
1 )), vk−1,j(κ(m

′k0
1 )),

. . . ,vNj(κ(m
′k0
1 )), such that m′k ∈ [1 : 2nR

′
k ], lk,j−1 ∈ [1 : 2nR̂k ], generate 2nR̂k sequences

ŷkj(lkj |lk,j−1, κj−N+1
j−k+2 (m

′k0
1 )), lkj ∈ [1 : 2nR̂k ], each according to

∏n
i=1 pŶk|Xk,Vk

(ŷk,(j−1)n+i|xk,(j−1)n+i(m′′k|m′k), v
N,(j−1)n+i
k−1,(j−1)n+i(κ(m

′k0
1 ))).

This defines the codebook

Cj =
{
vk,j(m

′
k),xk,j(m

′′
k|m′k), k ∈ [1 : k0],

vk,j(κ(m
′k0
1 )),xk,j(lk,j−1|κ(m

′k0
1 )), ŷkj(lkj |lk,j−1, κj−N+1

j−k+2 (m
′k0
1 )), k ∈ [k0 + 1 : N ]

: m′k ∈ [1 : 2nR
′
k ],m′′k ∈ [1 : 2nbR

′′
k ], lkj , lk,j−1 ∈ [1 : 2nR̂k ]

}

for j ∈ [1 : b].

Encoding: Let (m′1, . . . ,m
′
k0
,m′′1, . . . ,m

′′
k0

) be the messages transmitted. Each relay node k ∈

[k0 + 1 : N ], upon receiving ykj at the end of block j ∈ [1 : b], decode the messages m
′k0
1 as

shown in the decoding step. The relay node then finds a bin index κ(m
′k0
1 ). After finding m

′k0
1

and the bin index, the node finds an index lkj such that

(Ŷkj(lkj |lk,j−1, κ(m
′k0
1 )),Ykj ,Xk,j(lk,j−1|κ(m

′k0
1 )),VN,j

k−1,j(κ(m
′k0
1 ))) ∈ T (n)

ε′ ,
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where lk,0 = 1, k ∈ [k0 + 1 : N ], by convention. If there is more than one such index, choose

one of them at random. If there is no such index, choose an arbitrary index at random from

[1 : 2nR̂k ]. Then each node k ∈ [k0 +1 : N ] transmits the codeword xk,j(lk,j−1|κ(m
′k0
1 )) in block

j ∈ [1 : b].

Decoding: Let ε > ε′.After each block, the decoder d ∈ D decodes the messages m
′k0
1 . The

messages are decoded as a k0 user multiple access channel [6, Theorem 14.3.5]. The relays use

joint typicality decoding and looks for messages m
′k0
1 satisfying

(V1,j(m
′
1), . . . ,Vk0,j(m

′
k0),Vk0+1,j(κ(m

′k0
1 )), . . . ,VN,j(κ(m

′k0
1 )),

Xk,j(lk,j−1|κ(m
′k0
1 )), Ykj) ∈ T (n)

ε

for all j ∈ [1 : b]

After b blocks,the decoder d ∈ D finds a unique message set (m̂′′1d, . . . , m̂
′′
k0d

), where m̂′′kd ∈

[1 : 2nbR
′′
k ], such that there exist some (l1j , . . . , lNj), lkj ∈ [1 : 2nR̂k ], and j ∈ [1 : b], satisfying

(V1,j(m
′
1), . . . ,Vk0,j(m

′
k0),Vk0+1,j(κ(m

′k0
1 )), . . . ,VNj(κ(m

′k0
1 )),X1,j(m

′′
1|m′1), . . . ,

Xk0,j(m
′′
k0 |m′k0),X(k0+1),j(l(k0+1),j−1|κ(m

′k0
1 )), . . . ,XN,j(lN,j−1|κ(m

′k0
1 )),

Ŷ(k0+1),j(l(k0+1),j |lk0+1,j−1, κ(m
′k0
1 )), . . . , ŶNj(lNj |lN,j−1, κ(m

′k0
1 )),YNj) ∈ T (n)

ε

for all j ∈ [1 : b], given that the messages m
′k0
1 have been decoded correctly.

Analysis of the probability of error: Relay node k can find the unique messages m
′k0
1 by joint

typical decoding. The messages are decoded in a manner similar to multiple access channels.

The relays will find a set of unique messages m
′k0
1 satisfying

(V1,j(m
′
1), . . . ,Vk0,j(m

′
k0),Vk0+1,j(κ(m

′k0
1 )), . . . ,VN,j(κ(m

′k0
1 )),

Xk,j(lk,j−1|κ(m
′k0
1 )), Ykj) ∈ T (n)

ε

for all j ∈ [1 : b] if,

R′(S) < I(V (S);Yk|V (Sc), Xk)

for all cut-sets S. By time sharing, the closure of the convex hull of the above rate vectors

can be achieved.
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Let M ′′k denote the message sent at node k ∈ [1 : k0] and Lkj , j ∈ [1 : b], denote the index chosen

by node k ∈ [k0+1, N ] for block j. To bound the probability of error for decoder d ∈ D, assume

without loss of generality that (M ′1, . . . ,M
′
k0

) = (M ′′1 , . . . ,M
′′
k0

) = (1, . . . , 1) =: 1. Define the

probability of errors given that m
′k0
1 is decoded correctly.

E0 :=
b⋃

j=1

(
V(k−1),j(κ(m

′k0
1 )), . . . ,VNj(κ(m

′k0
1 )),Xk,j(lk,j−1|κ(m

′k0
1 )),

Ŷk,j(lk,j |lk,j−1, κ(m
′k0
1 )),Ykj

)
∈ T (n)

ε

Em′′ :=
{

(V1,j(1), . . . ,Vk0,j(1),Vk0+1,j(~1), . . . ,VNj(~1),X1,j(m
′′
1|1), . . . ,

Xk0,j(m
′′
k0 |1),X(k0+1),j(l(k0+1),j−1|~1), . . . ,XN,j(lN,j−1|~1),

Ŷ(k0+1),j(l(k0+1),j |lk0+1,j−1,~1), . . . , ŶNj(lNj |lN,j−1,~1),Ydj) ∈ T (n)
ε

}
.

for some (l1, . . . , lb), j ∈ [1 : b].

Here, lj = (l1j , . . . , lNj) for j ∈ [1 : b]. Then the probability of error is upper bounded as

P(E) ≤ P(E0) + P(Ec0 ∩ Ec1′′) + P(∪m′′ 6=1Em′′), (5.18)

As in the single relay channel case, by the covering lemma, P(E0) → 0 as n → ∞, if R̂k >

I(Ŷk;Yk|Xk, V
N
k−1), k ∈ [k0 + 1 : N ], and by the conditional typicality lemma P(Ec0 ∩ Ec1′′) → 0

as n → ∞. For the third term, assume without loss of generality that L1 = · · · = Lb = 1,

where Lj := (L1j , . . . , LNj). Define the events

Aj(m′′, lj−1, lj ,~1) :=
{

(V1,j(1), . . . ,Vk0,j(1),Vk0+1,j(~1), . . . ,VNj(~1),X1,j(m
′′
1|1), . . . ,

Xk0,j(m
′′
k0 |1),X(k0+1),j(l(k0+1),j−1|~1), . . . ,XN,j(lN,j−1|~1),

Ŷ(k0+1),j(l(k0+1),j |lk0+1,j−1,~1), . . . , ŶNj(lNj |lN,j−1,~1),YNj) ∈ T (n)
ε

}

for m′′ 6= 1 and all lj . Then,

P(Em′′) = P(∪lb ∩bj=1 Aj(m′′, lj−1, lj ,~1))

≤
∑

lb

b∏

j=2

P(Aj(m′′, lj−1, lj ,~1)),

For each lb and j ∈ [2 : b], let Sj(lb) ⊆ [1 : N ] such that Sj(lb) = {k : lk,j−1 6= 1}.
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Define Xj(Sj(lj−1)) to be the set of Xkj(lk,j−1|~1), k ∈ Sj(lj−1), where lk,j−1 are the cor-

responding elements in lb. Similarly define Ŷj(Sj(lj−1)) and Yj(Sj(lj−1)). Then, by joint

typicality lemma

P(Aj(m, lj−1, lj)) ≤ 2−n(I1(S(lj−1))+I2(S(lj−1))),

where

I1(S) := I(X(S); Ŷ (Sc), Yd|X(Sc), V N ),

I2(S) :=
∑

k∈S
I(Ŷk; Ŷ (Sc ∪ {k′ ∈ S : k′ < k}), Yd, XN |Xk, V

N
k−1)

Following an analysis similar to [36], it can be shown that

∑

m′′ 6=1

∑

lb

b∏

j=2

P(Aj(m′′, lj−1, lj))→ 0

as n→∞ if

R′′(S) <
b− 1

b

(
min
S

(
I1(S) + I2(S)−

∑

k∈S
R̂k

))
− 1

b

(
N−1∑

k=2

R̂k

)

where the minimum is over S ⊆ [1 : N ] such that d ∈ Sc

By eliminating R̂k > I(Ŷk;Yk|Xk, V
N
k−1) and letting b → ∞, the probability of error tends

to zero as n→∞ if

R′′(S) < min
S

(
I1(S) + I2(S)−

∑

k∈S
I(Ŷk;Yk|Xk, V

N
k−1)

)

Finally, note that

I2(S)−
∑

k∈S
I(Ŷk;Yk|Xk, V

N
k−1) =

∑

k∈S
−I(Ŷk;Yk|XN , Ŷ (Sc), YN , Ŷ ({k′ ∈ S : k′ < k}), V N

k−1)

=
∑

k∈S
−I(Ŷk;Y (S)|XN , Ŷ (Sc), YN , Ŷ ({k′ ∈ S : k′ < k}), V N

k−1)

= −I(Ŷ (S);Y (S)|XN , Ŷ (Sc), YN , V N
k−1).

Therefore, the probability of error tends to zero as n→∞ if

R′′(S) < min
S

(
I(X(S); Ŷ (Sc), YN |X(Sc), V N )− I(Ŷ (S);Y (S)|XN , Ŷ (Sc), YN , V N

k−1)
)

(5.19)

for all S ⊆ [1 : N ] such that N ∈ Sc.
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The rate achieved by superposition noisy network coding on a multiple source multicast

network is

R′(S) < min
S
I(V (S);Yk|Xk, V (Sc))

R′′(S) < min
S

(
I(X(S); Ŷ (Sc), YN |X(Sc), V N )− I(Ŷ (S);Y (S)|XN , Ŷ (Sc), YN , V N

k−1)
)

We next apply the superposition noisy network coding scheme to AWGN single and two-

way Gaussian relay channels. We compare the achievable rate to the existing schemes of noisy

network coding, compress-forward and the cut-set upper bound.

5.5 Numerical results

Consider a Gaussian relay channel model,

Y2 = aX1 + Z1 (5.20)

Y3 = X1 + bX2 + Z2 (5.21)

where the noise terms Z1 and Z2 are uncorrelated zero mean Gaussian random variables with

variances N1 and N2 respectively, and a and b are the channel gain constants. As a result, we

have

p(y2, y3|x1, x2) =
1

2π
√
N1N2

exp

[
−(y2 − ax1)2

2N1
− (y3 − x1 − bx2)2

2N2

]
, (5.22)

which will be the channel assumed throughout the section. The average power constraints at

the transmitters are

1

n

n∑

i=1

x21i(k) ≤ P1, ∀k ∈M, (5.23)

and

1

n

n∑

i=1

x22i ≤ P2, ∀yn2 ∈ <n. (5.24)

The Gaussian relay channel model analyzed is such that all the terminals are aligned in a

line [24]. The source and destination are at unit distance. d is the distance between the source
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and relay with a = 1/d. 1− d is the distance of relay from the destination with b = 1/(1− d).

Fig. 5.5 plots the rates achieved by superposition noisy network coding for P1 = P2 = 5. The

rates achieved are compared to the schemes of noisy network coding, compress-forward and

cut-set bound. Noisy network coding achieves the same rate as compress-forward scheme for a

single relay channel. It is observed that the superposition noisy network coding scheme has
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Figure 5.5 Achievable rates for an AWGN single relay channel using superposition noisy net-
work coding

an advantage over the noisy network coding scheme when the relay is close to the source. This

advantage arises due to a strong source-relay link. The relay can decode partial information

depending on the strength of the link. The rate decreases as the relay gets closer to source.

For Gaussian relay channel, the rate loss caused by forcing U1 and V2 to be independent

would be present only in the region where the relay is “close” to the source, specifically given

by the condition

I(X1;Y2|X2) > I(X1X2;Y3).

The term I(X1;Y2|X2) represents the rate at which information can be transferred from

source to the relay. The term I(X1X2;Y3) represents the rate at which source and relay

coherently transmit information to the destination. The inequality states that the source relay

link is not the bottleneck in capacity. For all other conditions, the source relay link I(X1;Y2|X2)
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is the capacity determining link, in which case mutual information is maximized by keeping

U1 and V2 independent. As a result, we do not see any loss of rate in other regions by forcing

U1 and V2 to be independent. Nevertheless, the rates achieved are still higher than the noisy

network coding scheme in spite of the disadvantage in lack of beam-forming. Beam-forming can

be incorporated by allowing U1 and V2 to be dependent for the single relay channel. The rates

achieved would then be same as the superpostion-forward strategy. We would have extended

the superposition-forward strategy using the ideas from noisy network coding.

The superposition noisy network coding scheme has been designed and analyzed for a single

relay Gaussian channel. It is in general advantageous to decode extra information available

at the relay and use it to transmit more information to destination. The superposition noisy

network coding scheme is now extended to two-way Gaussian relay channel which is an example

of single source multicast network.

5.5.1 Two-way relay channel

The two-way relay channel shown in Fig. 5.6 was first introduced by Shannon [45]. The two-

way relay channel is a fundamental building block for multi-user information theory. Rankov

et al. [46] derived the achievable rates for the two-way relay channel using the schemes decode-

forward and compress-forward. The rates achieved by superposition noisy network coding is

derived for the two way relay channel and compared to the existing rates.

1 2

3

g21 = g12

g32 = g23g21 = g12

Figure 5.6 Gaussian two-way relay channel

The AWGN two-way relay channel is given by

Y1 = g21X2 + g31X3 + Z1,

Y2 = g12X1 + g32X3 + Z2, (5.25)

Y3 = g13X1 + g23X2 + Z3,
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where the channel gains are g12 = g21 = 1, g13 = g31 = d−γ/2 and g23 = g32 = (1 − d)−γ/2,

and d ∈ [0, 1] is the location of the relay node between nodes 1 and 2 (which are unit distance

apart). Source nodes 1 and 2 wish to exchange messages reliably with the help of relay node

3. Specializing Theorem 5 to the two-way relay channel gives the inner bound that consists of

all rate pairs (R1, R2) such that

R′1 ≤ min{I(U1;Y2|U2, V3, X3), I(U1, V3;Y2|U2, X2)} (5.26)

R′2 ≤ min{I(U2;Y1|U1, V3, X3), I(U2, V3;Y1|U1, X1)} (5.27)

R′1 +R′2 ≤ I(U1, U2;Y3|V3, X3) (5.28)

R′′1 ≤ min{I(X1;Y2, Ŷ3|X2, X3, U1, U2), (5.29)

I(X1, X3;Y2|X2, U1, V3)− I(Y3; Ŷ3|X1, X2, X3, Y2, U1, U2)} (5.30)

R′′2 ≤ min{I(X2;Y1, Ŷ3|X1, X3, U1, U2), (5.31)

I(X2, X3;Y1|X1, U2, V3)− I(Y3; Ŷ3|X1, X2, X3, Y1, U1, U2)}

for some p(q)p(u1)p(u2)p(v3)p(x1|u1, q)p(x2|u2, q)p(x3|v3, q)p(ŷ3|y3, x3, q).
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Figure 5.7 Achievable rates for an AWGN two-way relay channel

Fig. 5.7 compares the achievable rates of the schemes derived as a function of relay distance.

The power constraint at the nodes are P1 = P2 = P3 = 10. It is observed that superposition

noisy network coding provides higher rates than compress-forward, noisy network coding and
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binning scheme. The binning scheme [30] is similar to decode and forward where the relay

decodes the messages from both the sources. The decoded messages are binned randomly and

the bin index is transmitted in the next block.
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Figure 5.8 Achievable rates for an AWGN separated two-way relay channel

Fig. 5.8 compares the achievable rates for the separated two-way relay channel. We set

g12 = g21 = 0. The power constraints are P1 = P2 = 10 dB and P3 = 5 dB. It is observed that

the superposition noisy network scheme achieves higher rates than compress-forward, noisy

network coding and binning scheme.

Noisy network coding is a special case of superposition noisy network coding scheme. If we

chose not to decode any message at the relay, the superposition noisy network coding scheme

would achieve the same rate as noisy network coding scheme. As compared to noisy network

coding, the superposition scheme performs better when the relay is close to either of the sources

and decoding partial information is advantageous to the sum rate. In general, superposition

network coding achieves the best of binning and noisy network coding scheme.

5.6 Conclusion

The noisy network coding for discrete memoryless channel is improved by superimposing

partial decode and forward of the messages. The encoding and decoding strategies are derived
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for the superposition noisy network coding. Noisy network coding is a special case of superposi-

tion noisy network coding. The rates achieved by superposition noisy network coding is higher

than the rates achieved by noisy network coding. It provides higher rates when the channel

from the source to the relay nodes are stronger. This observation is confirmed by numerical

results on single relay channel.

Superposition noisy network coding scheme is extended to multiple source multicast net-

works. The achievable rates were derived and generalized to two-way relay channel. It is

numerically observed that the superposition noisy network coding scheme provides higher rates

than noisy network coding, compress-forward and binning. The observation is consistent with

AWGN single relay channel and AWGN two-way relay channel.
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CHAPTER 6. SUMMARY

Many works in the literature of relay channel conclude with the proposition that superposi-

tion scheme can provide better achievable rate. The superposition-forward scheme is analyzed

and it is shown that it can only achieve rates of at most decode-forward or compress-forward.

Both schemes are special cases of superposition-forward. This shows that SF scheme is the best

known achievable rate so far and it achieves capacity for all the special cases of relay channel

where the capacity is known.

In another parallel work [36], it was shown that noisy network coding combines network

coding with compress-forward to improve on the classic compress-forward achievable rate. This

is shown to provide higher achievable rates for the case of relay networks with more than one

source.

As a natural generalization, superposition noisy network coding is designed and analyzed.

This scheme combines network coding with superposition-forward and promises the best achiev-

able scheme so far. Further work is carried on to extend the superposition noisy network cod-

ing to discrete memoryless multiple source multicast networks. The multiple source network

is constrained such that the source nodes do not act as relays. The decode forward scheme is

extended to multicast networks using binning and m-user multiple access channel schemes. The

achievable rate of the superposition noisy network coding scheme for multiple source multicast

network is applied to two way relay channel and single source relay channel. It is observed

that superposition scheme can be advantageous compared to individual existing schemes like

compress forward or decode forward. The new coding scheme of superposition noisy network

coding scheme achieves higher rates than the existing noisy network coding scheme for multicast

networks.
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6.1 Future Work

The superposition noisy network coding should be extended to a general multi source multi-

cast network where the source node can also act as relays. This would provide the achievability

results of superposition noisy network coding for the most general multiple source multicast

network.

As observed in [37], message repetition encoding is not required to achieve the rates in

noisy network coding for channels with single source. The noisy network coding rate can be

achieved by using successive encoding and joint decoding at the destination. This can simplify

the superposition noisy network coding scheme for the single source multicast network.

Another consideration is to look at the restriction on the input messages at the source

and the relays. We force the input messages to be independent which results in a loss of

rate as compared to superposition forward case. For a single relay case, it is straightforward

to implement the dependency of the input random variables. This would provide the rates

achieved by superposition forward. The superposition noisy network coding scheme can be

extended with beam-forming to single source multicast networks.

A new direction of research would be to consider new schemes of hybrid decoding and hybrid

digital-analog noisy network coding scheme. The hybrid coding scheme unifies amplify-forward

and noisy network coding. We should look at new ideas to improve the superposition noisy

network coding and work on finding better lower bounds on capacity.

The best known upper bound for the relay channel is still the cut set bound and it is known

for some channels like the diamond relay channel, that the cut set is not a tight bound. Efforts

can be made to find a tighter upper bound and make progress to find the capacity limits for

the relay channel. The gap to cut set bound should also be quantized for the superposition

noisy network scheme.

Lattice coding is another technique parallel to random coding and promises higher achiev-

ability rates. We should consider if superposition can be applied in conjunction with lattice

coding. Existing results should be compared with techniques using lattice coding.
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